FRT Capability Enhancement of Wind Turbine Based on DFIG Using Machine Learning

Author:

GENCER Altan1

Affiliation:

1. Nevşehir Hacı Bektaş Veli Üniversitesi

Abstract

Çift beslemeli asenkron generatörü (ÇBAG), şebeke arızası sırasında meydana gelen yüksek gerilimin ve akımın zararlı etkilerine karşı çok hassastır. Makine öğrenmesi (ML) yöntemlerinden biri olan destek vektör makineye (DVM) dayalı bir kapasitif köprü tipi arıza akım sınırlayıcısı (KKTAAS), üç fazlı arızada geçiş (FRT) performansını iyileştirmek için önerilmiştir. Bu çalışmada, normal şebeke koşullarında çalışan ÇBAG tabanlı bir rüzgâr türbininde oluşabilecek faz-toprak (3LG) simetrik şebeke hatası DVM' ye dayalı makine öğrenimi algoritması hem ÇBAG dönüştürücülerin kontrol sistemlerinde hem de KKTAAS' in bir kontrol sisteminde uygulanmıştır. Rotor tarafında, şebeke tarafında dönüştürücüde ve KKTAAS' in devre topolojisinde kullanılan elektronik anahtarlama elemanlarının anahtarlama sinyallerini üretmek için dört farklı DVM sınıflandırıcı algoritması uygulanmıştır. DVM sınıflandırıcılarının eğitiminde İnce Gauss, Kuadratik, Kübik ve Doğrusal çekirdek fonksiyonları tercih edilmiştir. Geliştirilen DVM’ ler, normal ve şebeke arızası koşulları sırasında dönüştürücülerin davranışlarını doğru tahmin etmek ve karar vermek için uygun şekilde eğitilmiştir. İnce gauss ve Doğrusal DVM türlerinin performansı, ÇBAG’ ye dayalı bir rüzgâr türbini için eğitim verimliliğinin etkinliği ile karşılaştırılmıştır. DVM' in İnce Gaussian' in doğruluk oranı %100’dür, Doğrusal DVM' in doğruluk oranı ise %22'dir. Simülasyon sonuçları, İnce Gaussian DVM' in, ÇBAG tabanlı bir rüzgâr türbini için Doğrusal DVM' ye kıyasla 3LG şebeke hatasının zararlı etkilerinden daha verimli bir şekilde koruduğunu göstermektedir.

Publisher

Omer Halisdemir Universitesi

Subject

General Economics, Econometrics and Finance

Reference32 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3