Conglomerate Crop Recommendation by using Multi-label Learning via Ensemble Supervised Clustering Techniques

Author:

Janrao SurekhaORCID,Shah Kamal,Aruna Pavate ,Patil RohiniORCID,Bankar SandipORCID,Vasoya AnilORCID

Abstract

Existing crop recommender related to either binary classification or multiclass classification. This paper presents conglomerate crop recommendations which consist of a number of different and distinct crops that are grouped together. In this work we focus on transferring knowledge from single label output prediction to multiple label predicted output for a given input data instances. We proposed ESCT algorithm i.e. Ensemble Supervised Clustering Techniques in our research work. ESCT provides a combined approach of conventional clustering and enhanced supervised clustering methodology to optimize the conglomerate recommendation. We are focusing on K-mean clustering for conventional approach and ICCC i.e. Inter cluster correlation coefficient to achieve enhancement in supervised clustering. In conventional K-mean clustering there is a big challenge on how to optimize the k-value of clustering which directly affects the convergence of the clusters. To resolve this problem, we mainly apply function approximation on K-Value which provides us with better clustering and fast convergence. Existing methods for inter-clustering do not adequately address one of the key challenges i.e. exploiting correlations between labels and that is achieved by ICCC algorithm. This model provides learning and prediction of unknown observation by using Back propagation MLL algorithm which provides improved performance.

Publisher

Asian Research Association

Reference32 articles.

1. K.K. Jha, A. Doshi, A comprehensive review on automation in agriculture using artificial intelligence. Artificial Intelligence in Agriculture, 2, (2019) 1-12. https://doi.org/10.1016/j.aiia.2019.05.004

2. S.K. Prasad, B.S. Sreedharan, S. Jaishanth, (2017) Crop monitoring and recommendation system using machine learning techniques. Madras Institute of Technology, Chennai.

3. N. Hegde, S. Sannidhi, R. Navada, S. Jambarmath, R. Madhavi, Survey paper on Agriculture Yield Prediction Tool using Machine Learning. International Journal of Advance Research in Computer Science and Management Studies, 5(11), (2017) 36-39.

4. G. Tsoumakas, I. Katakis, I. Vlahavas, Effective and Efficient Multi-label Classification in Domains with Large Number of Labels. ECML/PKDD 2008 Workshop on Mining Multidimensional Data (MMD '08), 21, (2008) 53-59.

5. E. Gibaja, S. Ventura. A tutorial on multi-label learning. ACM Computing Surveys, 47(3), (2015) 1–38. https://doi.org/10.1145/2716262

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3