Effective Groundnut Crop Management by Early Prediction of Leaf Diseases through Convolutional Neural Networks

Author:

Kukadiya HirenkumarORCID,Meva DivyakantORCID,Nidhi Arora ,Srivastava ShilpaORCID

Abstract

Groundnut (Arachis hypogaea L.), is the sixth-most significant leguminous oilseed crop grown all over worldwide. Groundnut, due to its high content of various dietary fibers, is classified as a valuable cash, staple and a feed crop for millions of households around the world. However, due to varied environmental factors, the crop is quite prone to many kinds of diseases, identifiable through its leaves, for which Groundnut producers have to suffer major losses every year. An early detection of such diseases is essential in order to save this significant crop and avoid huge losses. This paper presents a novel Machine Learning based Deep Convolution Neural Network (CNN) model ‘CNN8GN’. The model uses transfer learning technique for detection of such diseases in Groundnuts at an early stage of crop production. A Groundnut real image data set containing a total of 5322 real images for six different classes of Groundnut leaf diseases, captured in the fields of Gujarat state (India) during September 2022 to February 2023, is generated for training, testing and evaluation of the proposed model. The proposed deep learning model architecture is designed on eight different layers and can be used on varied sized images using simple ReLu and Softmax activation functions. The performance of the proposed CNN8GN model on Groundnut real image dataset is examined using a detailed experimental analysis with other six pre-trained models: VGG16, InceptionV3, Resnet50, ResNet152V2, VGG19, and MobileNetV2. CNN8GN results are also examined in detail using different sets of input parameters values. The proposed model has shown significant improvements for disease detection in comparative analysis with 99.11% training and 91.25% testing accuracy.

Publisher

Asian Research Association

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AI and Neural Network-Based Approach for Paddy Disease Identification and Classification;International Research Journal of Multidisciplinary Technovation;2024-04-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3