Terahertz-Graphene-Metasurface Based Biosensor with Dual-Resonance Response as a tool for cancer detection using cell specific frequency

Author:

Khussein Abobakr Mohamed Abbakar -1

Affiliation:

1. FSBEI of HE "Bauman Moscow State Technical University"

Abstract

Early detection is the most important strategy for controlling and management of cancer, which can significantly increase the survival rate by detecting disease in the early stages and rapid treating and preventing the progression of the disease. Based on existence of specific cell frequencies in the form of the response of each cell to its own specific frequency and the difference between normal and tumor cell frequency levels as a hallmark for cancer detection, we suggest using Graphene-based metasurfaces. Owing to the outstanding physical properties of graphene, its biosensing applications implemented by the terahertz metasurface are widely concerned and studied.a novel design of the graphene metasurface, proposed by ( Tan et al., 12) consists of an individual graphene ring and an Hshaped graphene structure. The graphene metasurface exhibits a dual-resonance response, whose resonance frequency strongly varies with its geometrical parameters. The simulated results clearly show that the theoretical sensitivity, figure of merit, and quantity of the proposed graphene metasurface for breast cells reach 1.21 THz/RIU, 2.75 RIU-1, and 2.43, respectively. These findings may open up new avenues for promising applications in the diagnosis of cancers.

Publisher

TSNS Interaktiv Plus, LLC

Subject

General Medicine

Reference23 articles.

1. Targeted treatment of cancer with radiofrequency electromagnetic fields amplitude-modulated at tumor-specific frequencies / W.Z. Jacquelyn, J. Hugo, B. Pasche // Chin J Cancer. ‒ 2013. ‒ №32 (11). ‒ P. 573–581;Jacquelyn WZ

2. The effect of pulsed electromagnetic fields in the treatment of osteoarthritis of the knee and cervical spine. Report of randomized, double blind, placebo controlled trials / D.H. Trock, A.J. Bollet, R. Markoll // J Rheumatol. ‒ 1994. ‒ №21. ‒ P;Trock DH

3. Treatment of nonunions with electric and electromagnetic fields / R.K. Aaron, D.M. Ciombor, B.J. Simon // Clin Orthop Relat Res. ‒ 2004. ‒ №419. ‒ P;Aaron RK

4. Osteoblastic differentiation and stress response of human mesenchymal stem cells exposed to alternating current electric fields / M. Hronik-Tupaj, W.L. Rice, M. Cronin-Golomb [et al.] // Biomed Eng Online. ‒ 2011. ‒ №10. ‒ P;Hronik-Tupaj M

5. Radiofrequency ablation of solid tumors / A.N. Mirza, B.D. Fornage, N. Sneige [et al.] // Cancer J. ‒ 2001. ‒ №7. ‒ P;Mirza AN

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3