A Study of the Influence of Data Complexity and Similarity on Soft Biometrics Classification Performance in a Transfer Learning Scenario

Author:

Romero MarceloORCID, ,Gutoski MatheusORCID,Hattori Leandro TakeshiORCID,Ribeiro ManassésORCID,Lopes Heitor SilvérioORCID, , ,

Abstract

Transfer learning is a paradigm that consists in training and testing classifiers with datasets drawn from distinct distributions. This technique allows to solve a particular problem using a model that was trained for another purpose. In the recent years, this practice has become very popular due to the increase of public available pre-trained models that can be fine-tuned to be applied in different scenarios. However, the relationship between the datasets used for training the model and the test data is usually not addressed, specially where the fine-tuning process is done only for the fully connected layers of a Convolutional Neural Network with pre-trained weights. This work presents a study regarding the relationship between the datasets used in a transfer learning process in terms of the performance achieved by models complexities and similarities. For this purpose, we fine-tune the final layer of Convolutional Neural Networks with pre-trained weights using diverse soft biometrics datasets. An evaluation of the performances of the models, when tested with datasets that are different from the one used for training the model, is presented. Complexity and similarity metrics are also used to perform the evaluation.

Publisher

Associacao Brasileira de Inteligencia Computacional - ABRICOM

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Transfer Learning Approach for the Tattoo Classification Problem;2022 IEEE Latin American Conference on Computational Intelligence (LA-CCI);2022-11-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3