Validation and Extension of Soil Response Framework for Fatigue Analysis of Offshore Wells and Piles

Author:

Zakeri Arash1,Sturm Hendrik2,Jeanjean Philippe1

Affiliation:

1. BP America Inc.

2. Norwegian Geotechnical Institute

Abstract

Abstract A soil response framework for use in fatigue assessment of offshore wells and piles is presented. The framework covers clay and sand soil types. It was developed through comprehensive series of physical testing and numerical simulations. It hinges on determination of the unload-reload secant stiffness response of soils degraded under cyclic fatigue loading and reaching a steady-state condition. The framework comprises two calibrated approaches: spring-only and spring-dashpot. The latter is more appropriate when dynamic response of a structure needs to be more accurately determined through for time-domain analysis. Efficacy and validation of the framework are demonstrated through three (3) field monitoring programs involving offshore wells installed in ground conditions ranging from soft clays typically encountered in deepwater to layered sands and clays in shallow waters. Further validation is provided by presenting results from an extensive laboratory testing program involving nine (9) soil samples taken from various geographical locations against the key relationships of the framework. The laboratory tests were conducted in a novel apparatus developed specifically for obtaining soil resistance–displacement relationship for input to fatigue analysis.

Publisher

OTC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3