Aphron Drilling Fluid: Field Lessons From Successful Application in Drilling Depleted Reservoirs in Lake Maracaibo

Author:

Montilva Julio1,Ivan Catalin D.2,Friedheim James2,Bayter Rafael2

Affiliation:

1. PDVSA

2. M-I L.L.C

Abstract

Abstract Depleted reservoirs pose numerous technical challenges in both the construction and completion phases for wells in dozens of producing fields, often putting into question the economical viability of these fields. Wellbore instability, severe lost circulation, and stuck pipe are just a few of the problems encountered when drilling into these low-pressured reservoir formations. No area better illustrates the problems with depleted reservoirs than the Lake Maracaibo region. Water-wet sands that frequently triggered costly seepage losses and differential sticking typify many of these zones. Some contain microfractured sandstone formations where uncontrollable losses of whole drilling fluid previously were the norm rather than the exception. Others are characterized by laminated sand and shale sequences, which create the conditions for slow, dangerous, and unduly expensive drilling. Attempts were made with underbalanced drilling, but in addition to the extra time and equipment required, wellbore instability lead to failed well construction and thus seriously degrading project economics. Over the past two years, a specialized drilling fluid has being utilized to drill these depleted reservoirs in Lake Maracaibo. This fluid combines certain surfactants and polymers to create a system of "micro-bubbles" known as aphrons encapsulated in a uniquely viscosified system. These aphrons are non-coalescing, therefore creating a micro-bubble network for stopping or slowing the entry of fluids into the formation. The aphrons allow conventional drilling equipment to be used to successfully complete many reservoirs that previously would have been candidates for underbalanced drilling only. This paper describes the development and application of the specialized "micro-bubbles" or aphron-based drilling fluid for drilling depleted reservoirs by controlling downhole mud loss and formation damage. The authors will detail the operational procedures and the field applications of this drilling fluid, with particular emphasis on the lessons learned in the Lake Maracaibo implementation of the system. Introduction The drilling problems associated with the depleted reservoirs intrinsic to many of the mature fields throughout the world often make further development uneconomical. Uncontrollable drilling fluid losses frequently are unavoidable in the often large fractures characteristic of these formations. Furthermore, the typical laminated sand and shale sequences create conditions that can make drilling unduly expensive and dangerous when using conventional rig equipment. Consequently, these and a host of associated problems have led some operators to forgo continued development of these promising, yet problematic, reservoirs. The overbalance pressure generated when using conventional drilling fluids is to blame for the majority of the loss circulation and differential sticking problems encountered when drilling these wells. The equipment required when using aerated muds or drilling underbalanced is often prohibitively expensive and meeting safety requirements can be an exhaustive effort. Furthermore, these techniques may fail to provide the hydrostatic pressure necessary to safely stabilize normally pressured formations above the reservoir. The early wells in the Lake Maracaibo area were drilled using underbalanced drilling techniques combined with special casing designs to isolate the Miocene and Eocene formations.

Publisher

OTC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3