Multiphase Ejector to Boost Production: First Application in the Gulf of Mexico

Author:

Andreussi P.1,Sodini S.2,Faluomi V.2,Ciandri P.2,Ansiati A.2,Paone F.3,Battaia C.4,De Ghetto G.4

Affiliation:

1. University of Pisa, Italy

2. TEA Group, Italy

3. AgipPetroleum, USA

4. ENI E&P

Abstract

Abstract A high pressure oil or gas well can be used to enhance both the production and the total recovery from a depleted well using a multiphase ejector. This device does not require any power supply and is characterized by a simple design, absence of moving parts and small dimensions, coupled with a high degree of reliability and low cost. The main disadvantages related with the use of multiphase ejectors are due to the lack of reliable design methods and to the sharp decrease of the performance when operative conditions change. In August 2002 a multiphase ejector has been installed in Allegheny TLP, GOM, to boost the production from a depleted well. In the present paper the design method and the results of field tests of the Allegheny ejector are presented. From a practical view-point the main result of this installation has been an increase of production of 1300 BOPD with an investiment of less than 50,000 USD. Introduction The ejector or Jet Pump, JP, is an artificial lift method which does not require any power supply and is characterized by a simple structural design, absence of moving parts and small dimensions, which allows easy installation and management procedures during fields operations, coupled with a high degree of reliability and low cost of installation, compared with other boosting systems. On the other hand, the ejector is a low-efficiency device: just a small fraction of the power fluid energy (approximately 20-30%) is actually transferred to the low pressure fluid (however it should be remarked that in many cases this energy would be lost through a choke valve). When the ejector is fed with multiphase fluids, significant modelling problems arise and no established methods are available for the design of multiphase ejectors. Design problems are increased by fluid properties changes during field evolution. To cope with all these problems and extend the operative life of the ejector, an advanced multiphase ejector has been developed in order to optimise some of the main geometrical parameters and improve the ejector performances at varying operative conditions. In this paper, the realization and field application of this multiphase ejector are described. Fig. 1 shows the main components of a JP: the nozzle, the mixing chamber followed by the mixing duct and the diffuser sections. Power fluid, at an injection pressure Pd is forced through the nozzle. As the fluid accelerates because of the area reduction, its kinetic energy increases and the pressure decreases to the value Pn at the nozzle exit section. The power and the produced fluids then enter the mixing chamber were pressure reaches its minimum value, Ps. In the mixing chamber, mixing duct and diffuser the pressure increases and the gas-liquid mixture leaves the ejector at a pressure Pl. The main concern about actual multiphase ejectors is the limited capability of the hardware to be adjusted when boundary conditions change (i.e. well depletion, water cut and/or GOR variation, production profiles). To this aim, the present multiphase ejector has been designed to be adaptable in terms of:

Publisher

OTC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3