New-Generation, Circumferential Ultrasonic Cement-Evaluation Tool for Thick Casings: Case Study in Ultradeepwater Well

Author:

Acosta J.1,Barroso M.1,Mandal B.1,Soares D.1,Milankovic A.1,Lima L.2,Piedade T.2

Affiliation:

1. Halliburton

2. Petrobras

Abstract

Abstract This paper describes the deployment of a new circumferential ultrasonic tool for cement evaluation used in a thick-casing environment. The operation was performed in a deepwater well, where massive loads often require heavier linear-weight casings with thicknesses greater than 1.0 in. A new-generation, circumferential, ultrasonic cement-evaluation tool was run in combination with a cement bond-log (CBL) tool to evaluate a primary cementing operation and assure zonal isolation in an ultradeepwater well with 10 3/4-in. casing set in the 14 3/4-in. hole section. Casings with thicknesses greater than 1.0 in. are outside the operating range of current circumferential ultrasonic tools. The improvement features, main specifications, and measurement physics comparing the new tool with previous-generation technology are presented. The operation was performed in a well containing two sizes of 10 3/4-in. casing in the same casing string. Both 85.3 lbm/ft (0.8-in. thick) and 109.0 lbm/ft (1.0-in. thick) casing sections were present and evaluated in the same pass. The sonic/circumferential ultrasonic combination was able to effectively evaluate the quality of the primary cementing operation behind both casing weights, as well as positively detect the top of cement (TOC). The combination of the ultrasonic tool with traditional bond-log technology provides independent and complementary measurements of cement bond quality. This presented the operator with the ability to radially analyze the zonal isolation using an image map and to identify cement quality issues, such as channeling and the presence of microannuli. In addition, the casing integrity was evaluated in the same pass using the ultrasonic tool. The new ultrasonic tool makes it possible to achieve confirmation of well integrity in complex, deepwater environments, clearly identifying zones ranging from free pipe to fully cemented conditions, including radial mapping. Improvements in the measurement physics enables the analysis of the annulus in cases of heavy, thick-walled tubulars, as well as in the presence of heavier drilling fluids.

Publisher

OTC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Techno-Economic Analysis of Using Palm Oil Fuel Ash and Quartz for Plugging and Abandonment of Hydrocarbon Well;SPE Nigeria Annual International Conference and Exhibition;2024-08-05

2. Cement-Quality Logging;Production Logging: Theoretical and Interpretive Elements;2021

3. Three-Dimensional Simulation of the Influences of Operational Parameters on Stability of Formation-Cement Sheath-Casing Combination;Materials Science Forum;2020-03

4. Barrier Verification;Introduction to Permanent Plug and Abandonment of Wells;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3