First Experience Matters: Evaluation of Acid Treatment Recipe for Fines Migration Control in S Field Sandstone Reservoirs

Author:

Bakar Hasmizah1,Ravichandran Narindran2,Abu Bakar Mohamad1,Idris Khairul Nizam1,Masoudi Rahim1

Affiliation:

1. Petronas

2. Hibiscus Petroleum

Abstract

Abstract Restoring formation damage by acid matrix treatment in sandstone formations faces multiple challenges due to variable petrophysical and compositional properties. The S field team had carried out a formation damage study to determine the damage mechanism, evaluate the best acid treatment recipe to treat the formation damage mechanism identified and study the effect on petrophysical properties before and after the treatment. Most of the S field oil producers experienced rapid decline in production, and this is suspected to be due to fines migration and plugging. The formation damage study is divided into three sections: the field background review, the potential formation damage identification, and the evaluation of the best acid treatment recipe for S field formations. Core samples from a wide range of mineralogy, permeability, pore distributions and porosity were evaluated using laboratory testing to describe the elemental and morphological presence of each mineral. Then, four of the core samples were high graded for evaluating the permeability by flooding with brine and oil to examine the fines migration and dispersion potential of clays and siderite. The next phase of this study was continued with the core sample acidization using organic acid and HCl to identify a suitable acid treatment cocktail. This will be discussed in detail in this paper. Fines migration was observed to be resulted from movement of both siderite and aluminosilicate clays under representative conditions. The evidence from the geological analyses and core flooding shows that in brine, there is a tendency for siderite to migrate, potentially even at low flow rates. The effect is expected to be more severe in brine than in oil and possibly in both phases. HCl acid and strong organic acid treatments with and without the presence of an iron control to remove iron carbonates in siderites and iron-silicate gel formation will be outlined in this paper. The result of the HCl treatment was that it was able to remove carbonate material from the core, but it was still not able to substantially improve wellbore permeability. An additional short phase of testing examining a HF-HCl package was demonstrated more effective and is discussed extensively in this paper. This laboratory work is not unusual to the sandstone stimulation however the discussion of the core flood testing findings and acid recipe comparative study provides more comprehensive understanding on the effect of fines migration to the success of the stimulation treatment and its effect on petrophysical properties. The outcome of this work will lead to a reliable design of sandstone matrix acid treatments and, increase the acid stimulation treatment success rate which subsequently optimizes well productivity.

Publisher

OTC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3