A Permeability Evolution Model of Double-Porosity Media with Consideration of Temperature and Pressure Variations

Author:

Zhang Yi1,Li Gao1,Leng Guangchun1,Wang Keda1,Wang Rui1,Li Pingxian1

Affiliation:

1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploration, Southwest Petroleum University

Abstract

Abstract Reservoir heat treatment (RHT) can improve rock seepage capacity. Recently, it has been considered as a potential technology to enhance unconventional oil and gas recovery. This work presents a permeability evolution model to describe the thermal cracking effects of double-porosity media under temperature change and certain formation pressure. Moreover, to verify the accuracy of the model, a typical double-porosity media (tight sandstone) is selected as the sample, and the permeability of the sample is tested using a simulated formation heating device. Firstly, according to the observation results under SEM, 400°C is regarded as the transition temperature of porous and fractured media. The two-parameter exponential function and the improved "cubic law" are used to characterize the permeability of the pore part and the fracture part respectively. Secondly, rock is comprised of matrix grains and pore space. In the model hypothesis, the volume of the matrix grains is just a function of temperature, and the pore space is compressed or released under the action of effective stress, considering the difference of deformation between the matrix grains and the pore space, the Hooke's law based on engineering strain and natural strain is adopted for them respectively. Thirdly, the influence of temperature on crack spacing and opening is analyzed based on the energy principle and Weibull distribution. Finally, a permeability evolution model is established for the whole process of thermal expansion and cracking. The model describes two phases. In the first phase, the matrix grains expand under confining pressure, and at the same time accumulate thermal stress. In the second phase, after the thermal stress overcomes the confining pressure, the porosity recovers and cracks are gradually damaged and formed. The interaction between thermal stress and confining pressure is controlled by introducing a modulation factor. Due to the difference of component properties, the rock has obvious non-uniform thermal fracture phenomenon. Therefore, in this model, three parameters are introduced to ensure the robustness of the model: the contribution of deformation behavior of the matrix grains and pore space to crack opening, the influence of effective stress on crack opening, and the crack proportion of effective seepage. The results indicate that the model can describe the permeability evolution behavior of double-porosity media under certain confining pressure and temperature changes, it provides theoretical guidance for RHT to enhance oil and gas recovery.

Publisher

OTC

Reference34 articles.

1. Experimental and modeling research on heated rock fracture seepage;Chen,2019

2. Experimental study on the influence of temperature on the mechanical properties of granite under uni-axial compression and fatigue loading;Chen;%J International Journal of Rock Mechanics and Mining Sciences,2012

3. The effect of cracks on the thermal expansion of rocks;Cooper;Earth and Planetary Science Letters,1977

4. Micro-crack enhanced permeability in tight rocks: An experimental and microstructural study;Claudio;Tectonophysics,2015

5. Influence of temperature and confining pressure on the mechanical properties of granite;Ding;Powder Technology,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3