Design Process and Validation of an Autonomous Surface Vehicle for the Offshore Industry

Author:

Coelho R.1,Daltry R.1,Dobbin V.1,Lachaud E.2,Miller I.2

Affiliation:

1. ASV

2. Technip

Abstract

Abstract Autonomous systems offer expanding capabilities to provide maritime services in a time where saving costs, creating efficiencies and improved safety are vital. Autonomous vehicles are complex systems and therefore their design and development requires careful and detailed planning. Autonomous Surface Vehicles (ASV) is a rapidly growing company based in the UK with offices in the United States and is a leading manufacturer of Unmanned and Autonomous Marine Systems. Utilising specialist expertise and experience in the design, build and operation of Marine Autonomous Systems, the C-Worker 6 Autonomous Surface Vehicle (ASV) was developed for marine operations support in the Oil & Gas industry. This paper explores the design and build process from a naval architecture, mechanical, electrical and software engineering point of view, from initial concepts to field operations. The authors also assess the presented method in a meta-design manner. With the initial concept and technology capabilities established, ASV collaborated with Oil and Gas service company Technip to establish industry requirements and define the final configurations accordingly through a dedicated technology qualification process. Technological advancements introduced in this 6 meter long vehicle known as the C-Worker 6, include the integration of multiple offshore payload combinations including USBL, ADCP (current meter), CTD, Multibeam Sonar, Acoustic Telemetry, and Passive Acoustic Sonar (PAM) for marine mammal detection. The robust design incorporating an aluminium, self-righting hull makes the vehicle suitable for harsh ocean environments. C-Worker 6 has a 30 day endurance at an average speed of 4 knots and houses fully redundant power propulsion and communication systems. As a result of the methodology applied, the product development timeline is presented. The paper also presents data evaluated from real missions. Early qualification of the vehicle has shown its ability to perform in the high sea states of the Gulf of Mexico successfully carrying out subsea positioning in 1300m deep waters with 2.5m waves, as well as having performed Touch Down Point (TDP) monitoring support for S-Lay pipe installation during the technology qualification. The vehicle has since undertaken different mission witch includes a 5 day deployment in the Irish Sea where it held station and extracted data from a subsea platform via an integrated acoustic modem payload, a multibeam survey on a future wind farm installation and Pacific Acoustic Monitoring (PAM) in the Gulf of Mexico. The interest for using unmanned and autonomous systems to support marine operations in Oil and Gas industry is anticipated to grow with the industry needs and requirements for more efficient, cost effective and safer solutions.

Publisher

OTC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3