GPU-Event-Mechanics Evaluation of Ice Impact Load Statistics

Author:

Daley Claude1,Alawneh Shadi1,Peters Dennis1,Colbourne Bruce1

Affiliation:

1. Memorial University

Abstract

Abstract The paper explores the use of a GPU-Event-Mechanics (GEM) simulation to assess local ice loads on a vessel operating in pack ice. The methodology uses an event mechanics concept implemented using massively parallel programming on a GPU enabled workstation. The simulation domain contains hundreds of discrete and interacting ice floes. A simple vessel is modeled as it navigates through the domain. Each ship-ice collision is modeled, as is every ice-ice contact. Each ship-ice collision event is logged, along with all relevant ice and ship data. Thousands of collisions are logged as the vessel transits many tens of kilometers of ice pack. The GEM methodology allows the simulations to be performed much faster than real time. The resulting impact load statistics are qualitatively evaluated and compared to published field data. The analysis provides insight into the nature of loads in pack ice. The work is part of a large research project at Memorial University called STePS2 (Sustainable Technology for Polar Ships and Structures).

Publisher

OTC

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical Investigation of Global Ice Loads of Maneuvering Captive Motion in Ice Floe Fields;Journal of Marine Science and Engineering;2023-09-11

2. Real-Time Navigation for Autonomous Surface Vehicles In Ice-Covered Waters;2023 IEEE International Conference on Robotics and Automation (ICRA);2023-05-29

3. Physics-Based Modelling of Ice Actions and Action Effects on Marine Structures;IUTAM Symposium on Physics and Mechanics of Sea Ice;2022

4. Toward a method for downscaling sea ice pressure for navigation purposes;The Cryosphere;2020-10-19

5. Ice Load Generation in Time Domain Based on Ice Load Spectrum for Arctic Offshore Structures;Journal of Ocean Engineering and Technology;2018-12-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3