Intelligent Completions: Design and Reliability of Interval Control Valves in the Past, Present, and Future

Author:

Joubran Jonathon1

Affiliation:

1. Halliburton

Abstract

Abstract The first intelligent completion was deployed in the Snorre field offshore Norway in August 1997, marking a major milestone for advanced completion engineering, reservoir insight, and production control. For the first time, an operator could manipulate tubing outflow performance at, or near, the sandface inflow node, without intervention or workover, but rather live via remote control using an interval control valve (ICV). Twenty years later, technological advancements have significantly increased the reliability and capability of intelligent completion tools with applications in ultra-deepwater, mature fields, as well as in the cost-sensitive unconventional arena. This paper discusses the significant technological advancements and reliability of ICVs by comparing the following: case history examples of technology, applications, and installations from the past and present; associated technological and operation challenges with solutions and resulting reliability increases; and a view of the future design and reliability aspects of ICVs with respect to hydraulic vs. electric control and actuation. ICV case history examples are discussed below: Comparing two field-wide offshore deepwater Africa campaigns in 2007 and 2015 with respect to ICV reliability, operational improvements, and technology from eight years of continuous improvement. Using a remotely operated hydraulic ICV installed above the production packer as a circulating device and a gas-tight barrier. This ICV was actuated through pressure signals to a battery-operated control module and micro-hydraulic pump vs. control lines to surface. History of ICVs installed as part of the mature fields of the Middle East and why high-actuation force will always be a requirement. A current high rate water injection completion campaign as part of an offshore mature field in which ICV position sensors transmitting choke positions in real time have significantly increased the operator's confidence of zonal-flow allocation. A Middle East operator's current application for low-cost ICVs. History of ICVs installed in multi-lateral completions and why they should stay in the motherbore. The steady increase in ICV reliability is the result of advancing technology, as well as continuous improvement in operational procedures. These case histories help detail each advancement. The future of intelligent completions and ICVs is tied to precision of device control, system reliability assurance, and effective use of sensor data to generate recognizable value. Precision and data require electronic control and transmission; however, hydraulic actuation offers more advantages with current available technology. This paper concludes with an argument for the future of practical ICV installation, zone control, actuation, and closed-loop operator interface.

Publisher

OTC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3