Geological and Geotechnical Considerations for Floating Offshore Wind Infrastructure within the U.S. Atlantic OCS

Author:

Fisher James E1,Esmailzadeh Saba1,Fillingham Jacob N1

Affiliation:

1. Fugro USA Marine Inc.

Abstract

Abstract Current offshore wind activities within the Atlantic Outer Continental Shelf are within water depths suitable for fixed-bottom foundations, generally considered as water depths shallower than 60 m. Recent BOEM designated call areas within the Central Atlantic include two areas on the continental slope in water depths greater than 200 m that will require floating offshore wind turbines. The objective of this study is to expand upon a previously completed BOEM-funded desktop study and focus on the geological and geotechnical conditions and the engineering constraints for the deep-water Central Atlantic call areas E and F. This study focused on compiling public domain geophysical and geotechnical data to evaluate the seafloor and shallow subsurface geological and geotechnical conditions relevant to offshore wind within the area of interest. Data available from published scientific literature and government agencies were integrated and evaluated using GIS and seismic interpretation software to identify and map geohazards, seabed and subsurface conditions, and key stratigraphic geotechnical units. Our evaluation of the area of interest indicates generally favorable conditions for floating offshore wind development, with site-specific considerations to be factored into engineering design. Soil provinces with similar geologic characteristics and geotechnical properties include the upper slope (roughly 200 m to 2000 m water depths) and the lower slope (greater than 2000 m water depth). General sediment conditions for both these provinces include Holocene-Pleistocene age silts and clays with intervals of sandy clay or sandy layers related to mass transport deposits (MTDs) from gravity flows. A key difference between the provinces is the potential for older geological units, such as the coastal plain deposits (CPD) within the foundation depth of interest proximal to the upper slope, and a higher frequency of submarine landslide deposits within the lower slope. The potential for slope instability and steep seabed gradients will be a constraint for these developments, as well as the potential for hard grounds, such as submarine landslide blocks or authigenic carbonate/benthic features. Based on these conditions, the suitability of various anchor concepts is discussed.

Publisher

OTC

Reference21 articles.

1. Proceedings of the Ocean Drilling Program 174A Initial Reports

2. Map and tabulation of Quaternary mass movements along the United States–Canadian Atlantic continental slope from 32° 00' to 47° 00' N latitude;Booth;USGS Misc. Field Studies Map MF-2027,1988

3. US Atlantic continental slope landslides: their distribution, general attributes, and implications;Booth,1993

4. A statistical overview of mass movement characteristics on the North American Atlantic outer continental margin;Booth;Marine Geotechnology,1991

5. Seabed fluid expulsion along the upper slope and outer shelf of the US Atlantic continental margin;Brothers;Geophysical Research Letters,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3