Salt Creeping Analysis on Deepwater Wells Submitted to Cooling Operations on Trapped Annular

Author:

Agostini Cristiano Eduardo1,Almeida Luiz Felippe Medeiros1,Júnior Nelson Moreira1,Magalhães Mateus Dias1,Roman Roger Savoldi1,Schnitzler Eduardo1,Silva Alan Pinheiro1

Affiliation:

1. Petrobras

Abstract

Abstract This paper presents the finite element analysis of salt-creep behavior on deepwater wells with trapped annulus, considering cooling effects caused by injection operations. In addition, this effect was considered coupled with salt-creep behavior and its influence on casing collapse design under transient and steady state well operation. The scenarios of injection flow rate and temperature profile were analyzed using the coupled approach, for salt creeping and thermal trapped annulus. The wellbore profile is a typical Pre Salt Brazilian Offshore, where rock salt layer is confined under two casing shoes. The injection wells operation results in a pressure decrease in a confined annulus due to thermal cooling between casing and salt formation. Due to this pressure drop on the trapped annulus, the salt creeping behavior tends to increase, and proper casing stress verification must be done. The finite elements analysis for salt creeping was modeled using commercial finite elements software package, and thermal profile for transient and steady state injection was obtained using thermal casing design software. The coupled effects were evaluated using commercial casing design software. Preliminary studies have shown that there is a great influence on the salt creeping response on confined annulus when subjected to a pressure decrease due to thermal cooling on trapped annulus, caused by water injection operation. It is observed that there is a growth of the confined annular pressure due to salt creeping effects and that there is an acceleration in this phenomenon. The analysis also shows that casing collapse safety margin is time dependent considering a given operation. After well shutdown, the natural heating of the confined annulus occurs due to geothermal effects, and this pressure is added to the trapped annulus, increasing the pressure of trapped annulus. The final pressure is the sum of the salt pressure build up accelerated by the cooling steady state regime and geothermal pressure build up, during shutdown. The worst case scenario could be during restart the well injection, in that way, this kind of situation must be analyzed, so that it does not lead to critical situations on the casing design. Historically, according to literature review, only the annular pressure build up with production heating is analyzed. This work is a novel approach where annular pressure drop off, caused by cooling operations, was investigated including coupled salt-creeping and thermal phenomenon.

Publisher

OTC

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3