Machine Learning Applications to Improve Pore Pressure Prediction in Hazardous Drilling Environments

Author:

Bui Huy1,De Nicolias Nelly1,Nye Rebecca1,Estrada John1

Affiliation:

1. Enovate

Abstract

Abstract Pore pressure analysis can be imperative while drilling, especially in certain offshore environments where abnormal pore pressures can cause serious problems such as fluid influx, kicks, and blowouts. In order to avoid such events, the prediction in real-time, or preferably ahead of time, is required. These events can have a catastrophic impact on operations and the safety of the entire platform. Real-time wellbore logs can be used to assist in the prediction of pore pressure, however, due to the high cost of downhole data acquisition and risks associated with a tool getting stuck or lost in hole, comprehensive well logs are not always available. In the absence of a measured sonic log, a predicted acoustic log can be used for input into the pore pressure prediction avoiding the risk and cost of downhole wellbore logs, however, accuracy is extremely important. A Gradient Boosting model is trained and validated on 3 different sets of features to predict acoustic wellbore logs, followed by a physics-based model for pore pressure prediction. The physics-based model is built using Eaton, density extrapolation, and other optimization methods to ensure speed and accuracy. Lastly, the model takes the predicted acoustic data to derive the pore pressure gradient, calibrated by other drilling parameters. The Gradient Boosting model reduces any impact from the lack of data availability, significantly reduces the root mean square error (RMSE) and increases the overall accuracy. The results are then calibrated to drilling events to ensure the predictions are within the range of actual recorded event data. The result from a recent case study shows that pore pressure prediction using predicted acoustic logs correlates closely with recorded drilling events. The client successfully estimated pore pressures using predicted acoustic logs, reducing the for the need to acquire costly logging data downhole. The Gradient Boosting model provides a solution to predict acoustic logs and pore pressure that is highly accurate in real-time. The drilling event calibration method then helps to avoid physical factors that cannot be captured by the model, increasing the overall reliability of the workflow. The method allows for pore pressure analysis to be carried out accurately, regardless of the downhole logs acquired.

Publisher

OTC

Reference14 articles.

1. Moos, D. and Zwart, G. 1998. Predicting Pore Pressure from Porosity and Velocity. Presented at the AADE Industry Forum, Pressure Regimes in Sedimentary Basins and Their Prediction, Del Lago, Texas, 2-4 September.

2. Nye, R. Mejia, C. and Dontsova, E. 2021. Real-Time Cloud-Based Automation for Formation Evaluation Optimization, Risk Mitigation, and Decarbonization. SPE Offshore Europe Conference & Exhibition, September 7–10, 2021.

3. Mechanisms for generating overpressure in sedimentary basins: a reevaluation;Osborne;AAPG Bulletin,1997

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3