Flexible Pipes Subjected to SCC CO2: Review and Means to Increase Reliability on Service Life Applied to Brazilian Pre-Salt Fields

Author:

Brandao Mauricio1,Pires Fabio1,Poloponsky Ingrid1,Santos Fabio1,Lopes Diogo1

Affiliation:

1. Baker Hughes

Abstract

Abstract Flexible Pipes were widely used in Brazil offshore developments and the challenge on overcoming increasing water depths, high pressures and fluids with high contaminants was always present. In 2017 a new failure mode, called SCC CO2 was disclosed bringing such disruption in the use of this equipment since, at that time, the conditions observed in Brazilian Pre salt were like the "perfect storm" for the failure mode to happen. It had high concentrations of CO2, therefore high permeation in the anulus, high stresses and the possibility to have anulus flooded as result of an outer sheath breach or even due to permeated water. These were the triple conditions needed to have the failure, considering that all metallic material used in the pipe were subjected to this phenomenon. Since the discovery was made, several test campaigns to better understand and replicate the phenomena started. They covered pipe retrieved from field dissection, several small-scale materials testing, and fracture mechanics to create reliable crack propagation calculations. There were 3 mains focus areas; to understand how to deal with the installed fleet, to define the conditions in which a crack would appear and define, using fracture mechanics, how long a crack would take to break the wire. In other words, it was intended to define what is the remaining service life. As a result of this investigation some initial beliefs like that all materials were subjected to the phenomena and that a solution was far away were somehow reduced and reshaped. There was also the initiative to embark on technology for detection of the anulus condition, mainly to define if it is flooded or not. Some ROV inspection means were added to the endfitting and some sensors were added to the interconnected pipe sections that allow conditioning monitoring or inspection from the floating unit, not using a ROV. This paper will cover the improvements done since the disclosure of the phenomena in 2017, reviewing what is known about it so far, what is still to be discovered and how the results achieved to date can contribute for a more reliable and longer service life for the flexible pipes to be applied in a rich CO2 environment.

Publisher

OTC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3