Sandwich Pipes for Ultra Deepwater Applications

Author:

Castello Xavier1,Estefen Segen Farid1

Affiliation:

1. U. Federal Rio de Janeiro

Abstract

Abstract Ultra deepwater scenarios, related to water depths beyond 1,500 m, require very thick walled steel pipelines or pipe-in-pipe systems, which are expensive and difficult to install due to excessive weight. Sandwich pipe is a new concept composed of two concentric steel pipes separated by and bonded to a polymeric annulus that provide the combination of high structural strength with thermal insulation. Previous results indicate that collapse pressure is strongly dependent on the polymer stiffness. The adhesion property is also important and can affect significantly the pipeline external pressure resistance due to the relative displacement between layers. Sandwich pipes can minimize steel costs and facilitate the ultra deepwater installation, with thermal and structural performance close to pipe-in-pipe systems. In this work, experimental tests and numerical models are employed to verify the influence of the inter-layer adhesion on the ultimate strength under external pressure and longitudinal bending of a sandwich pipe prototype. The maximum shear stress obtained from sandwich pipe specimens bonded by a particular adhesive indicated the adhesion levels to be adopted in the numerical simulations. Contact model combined with non-linear springs that connect the steel pipes to the polymer layer was employed to analyze both bonding and slipping conditions. As expected for a sandwich structure, the strength is strongly dependent on the interface stickiness. The analyzed geometry is able to withstand a water depth up to 3,000 meters with a bonding strength corresponding to only 10% of the idealized perfect adhesion condition. Finally, sandwich pipes with typical inner diameters of those employed in the offshore production are analyzed numerically to evaluate the ultimate strength under external pressure. The annular material must have both adequate mechanical strength and low thermal conductivity properties to satisfy the operational requirements. Some polymeric materials with different properties are selected. The global heat transfer coefficient is determined in each case to attend the thermal insulation requirements of an oil field. Introduction New concepts for submarine pipelines and risers have been proposed recently in order to achieve flow assurance in deepwater environment. It is the case of both pipe-in-pipe (PIP) and sandwich pipe (SP). PIP is composed of two concentrically mounted steel pipes with the annular space filled with either circulating hot water or materials with known thermal insulation properties. The objective of this type of pipe is to increase the thermal insulation capacity to prevent blockage of the line caused by dropping fluid temperature below that required to form paraffin or hydrate. One of the advantages of PIP system is the possibility of using materials with excellent thermal properties, considering that the structural integrity is provided independently by the outer and inner steel layers, Grealish and Roddy (2002). In the case of SP, object of this study, the annular layer characteristics differ from PIP by satisfying simultaneously mechanical and thermal requirements. Therefore, greater structural strength combined with adequate flow assurance can be obtained. Sandwich structures are a particular kind of composite characterized by the combination of different materials bonded together, contributing with their single properties to the global structural performance. Usually, the sandwich structure is divided in three layers: two external thin and stiff and a central thick and flexible core. The external layers are bonded to the core to allow the load transfer between the components. Numerical and experimental studies have been carried out to obtain data about the mechanical behavior of this kind of structure not very well understood so far, as done by Borselino et.al. (2004) and Sokolinsky et.al. (2002). Sandwich structures, i.e. light and stiff panels, have been employed in the naval industry mainly, searching the advantages associated with weight reduction, fuel economy, stability during navigation and corrosion resistance, as mentioned by Mouring (1999). Several multilayered applications are found with thermal insulation purpose for submarine pipelines and equipment in the offshore industry, but the benefit of the structural performance of this kind of structure has not been yet pursued for deepwater pipelines and risers, as it is the case of the present work.

Publisher

OTC

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Probabilistic Collapse Design and Safety Assessment of Sandwich Pipelines;Journal of Marine Science and Engineering;2022-10-05

2. Effect of dent defects on the collapse pressure of sandwich pipes;Thin-Walled Structures;2022-01

3. Sandwich Pipes Filled with Steel Fiber Reinforced Concrete;Structural and Thermal Analyses of Deepwater Pipes;2020-10-29

4. Sandwich Pipes;Structural and Thermal Analyses of Deepwater Pipes;2020-10-29

5. Transient Analysis of Multilayer Composite Pipelines with Active Heating;Structural and Thermal Analyses of Deepwater Pipes;2020-10-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3