Effect of Soil Variability on the Penetration Depth of Dynamically Installed Drop Anchors

Author:

Sturm Hendrik1,Lieng Jon Tore2,Saygili Gokhan3

Affiliation:

1. Norwegian Geotechnical Institute

2. Deep Sea Anchors

3. NGI

Abstract

Abstract Due to the increasing interest in the last years in cost effective and easy to handle anchoring solutions for floating offshore structures, a series of model tests with so-called Deep Penetrating Anchors (DPA™, Lieng [6]) has been conducted at the Norwegian Troll field. Prior to the tests the penetration depth of the anchors had been predicted based on a representative soil profile as it is commonly used in the FEED-design of geotechnical structures at the Troll field. However, the actual penetration depth achieved in tests was noticeably lower than predicted. Subsequent detailed soil investigations at the test site revealed a somewhat different soil profile than assumed in the design. Calculations accounting for the updated soil profile could explain the discrepancy between the measurements and the prediction. In 1975 True [17] proposed an approach for the prediction of the installation process of cylindrical-shaped objects penetrating dynamically in predominately homogenous soft soils. This approach has been extended and implemented in a FORTRAN routine which can account for arbitrary soil layering and complex geometries of the penetrating object. In addition rate effects are considered more accurately where the soil shear strength is a direct function of the actual penetration rate. This contribution presents a numerical study using the implemented model. The calibration is done by back-calculations of the drop tests performed at the Troll field. The model is then used for a sensitivity study by varying the soil properties in order to identify a reasonable application range of the considered anchor type based on a qualitative evaluation of the achieved capacity. Introduction The concept of DPAs or Torpedo Anchors (TA™) has emerged in the last decade due to the requirements of the oil and gas industry for reliable and cost effective anchoring systems. The anchors considered are torpedo-shaped steel structures with wings that are installed dynamically penetrating the seabed with an initial impact velocity achieved during an underwater free-fall phase. The potential of dynamically installed anchoring systems for the mooring of floating offshore structures has already been recognized by True [17] in the early 70s. The commercial employment of TAs, however, started first in the late 90s by Petrobras, offshore Brazil. While these anchors are used today mainly for the mooring of floating oil and gas facilities, they are also a potential foundation solution for floating Offshore Wind Turbines (OWT) when these move into deeper waters. In order to have sufficient capacity, the anchors - generally 10 to 15 m long and 35 to 115 tons1 - should penetrate approximately 2 to 3 times their length into the seabed. The padeye where the mooring line is attached is located in general at the top of the anchor. Although this padeye position is beneficial for operational aspects and also affects only very little the total (vertical) capacity in case of taut moorings, the padeye position can be unbeneficial for catenary moorings. From studies on suction anchors is known that the highest total capacity can be achieved for padeyes located at the lower half of the anchor2, e.g. Andersen et al. [1]. Similar results have been found for anchor plates, e.g. Rowe and Davies [14].

Publisher

OTC

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3