Successful Development and Deployment of a Global ROP Optimization Machine Learning Model

Author:

Robinson Timothy S.1,Batruny Peter2,Gomes Dalila1,Hashim M. Meor Hakeem Meor2,Yusoff M. Hazwan2,Arriffin M. Faris2,Mohamad Azlan2

Affiliation:

1. Exebenus AS

2. PETRONAS

Abstract

Abstract Drilling rate of penetration (ROP) is a major contributor to drilling costs. ROP is influenced by many different controllable and uncontrollable factors that are difficult to distinguish with the naked eye. Thus, machine learning (ML) models such as neural networks (NN) have gained momentum in the drilling industry. Existing models were either field-based or tool-based, which impacted the accuracy outside of the trained field. This work aims to develop one generally applicable global ROP model, reducing the effort needed to re-develop models for every application. A drilling dataset was gathered from exploration and development wells in both onshore and offshore operations from a variety of fields and regions. The wells were curated to have different water depths, down hole drive such as Rotary Steerable System (RSS), PDM, Standard Rotary, bit types (Mill Tooth, TCI, PDC) and inclinations (vertical or deviated). A deep neural network was used for modelling the relationship between ROP and inputs taken from real-time surface data, such as Torque, Weight-on-Bit (WOB), rotary speed (RPM), flow and pressure measurements. The performance of the ROP model was analyzed using historical data via summary statistics such as Mean Absolute Percentage Error, as well as graphical results such as residuals distributions, cumulative distribution functions of errors, and plots of ROP vs depth for independent holdout testing wells not included in the model fitting process. Analysis was done both in aggregate, and for each specific well. The ROP model was demonstrated to generalize effectively in all cases, with only minor increases in error metrics for the holdout test wells, where the Mean Absolute Percentage Error averaged across wells was ~20%, compared to 17.5% averaged across training wells. Furthermore, residuals distributions were centered close to zero, indicating low systematic error. This work proves the case for a "global" ROP prediction model applicable "out-of-the-box" to a broad set of drilling operations. A global ROP model has the potential to eliminate learning curves, reducing time and costs associated with having to develop a new model for every field. Furthermore, a model that effectively captures the relationships between parameters controllable by drillers and ROP can be used for automatically identifying drilling parameters that improve ROP. Preliminary field-testing of the ROP optimization system yielded positive results, with many examples of increased ROP realized after following drilling parameter recommendations provided by the software.

Publisher

OTC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3