Subsurface Image Morphing Operator Using Deep Learning Techniques

Author:

Chen C. S.1,Datta D.1,Chandran A.1,Gupta M.1,Chen J.1,Sidahmed M.2

Affiliation:

1. Shell Global Solutions, Inc., Houston, Texas, US

2. Shell Global Solutions, Inc., Rio de Janeiro, Brazil

Abstract

Abstract Velocity uncertainty is one of the major challenges for subsurface imaging in oil & gas exploration. A surrogate migration engine based on image morphing operation can significantly reduce migration costs and speed up subsurface velocity model building workflow. We develop a machine learning based approach to predict subsurface image change due to velocity perturbation. This fast image change estimator takes the three channel inputs: an initial velocity model, its migrated image, and a velocity perturbation. It outputs the new image due to the velocity change. It is implemented using deep neural networks with 3D Fourier neural operator. We verify this image morphing operator with both synthetic data and field data experiments. The goal of this study is in speeding up the velocity model scenario tests.

Publisher

OTC

Reference12 articles.

1. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution and Fully Connected CRFs;Chen;IEEE Transactions on Pattern Analysis and Machine Intelligence,2018

2. Machine learning assisted history matching for a deepwater lobe system;Jo;Journal of Petroleum Science and Engineering,2021

3. Automatic history matching of multistage fractured shale gas reservoir constrained by microseismic data;Liu;Journal of Petroleum Science and Engineering,2022

4. Li, Z., Kovachki, N. B., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, B., and Anandkumar, A., Fourier neural operator for parametric partial differential equations: International Conference on Learning Representations, 2021. https://doi.org/10.48550/arXiv.2010.08895

5. A composite neural network that learns from multi-fidelity data: Application to function approximation and inverse PDE problems;Meng;Journal of Computational Physics,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3