Internal Sound Pressure Level Estimation Considering Design Through Computational Aeroacoustics

Author:

Macchion Olivier Jean1,Stachyra Leszek Lukasz1,Morand Henri1

Affiliation:

1. TechnipFMC

Abstract

Abstract Subsea chokes differ from the standard choke designs that can be found in for example the IEC 60534-8-3 standard, due to their geometry but also due to the environment. Contrary to topside chokes where monitoring for sound and vibration can be carried out in a relatively straightforward manner, noise and vibration monitoring is not easily executed subsea, which means that the estimate of the generated noise needs to be calculated, or extrapolated in some way from lab data. Computational methods to validate designs often provide an alternative method to physical validation testing when size or recreating particular environments are impractical. However, to be able to use computational analysis for this purpose, it is essential to ensure that a sound and benchmarked methodology is applied. This paper discusses an optimized methodology that combines Computational Aeroacoustics and IEC 60534-8-3 for the estimation of the internal sound pressure level (SPL) generated by choke valves. Three broad types of tools (all broadband models) are available to estimate hydrodynamic induced SPL, namely: 1) one-way coupled Computational Fluid Dynamics (CFD), 2) acoustic solvers, 3) two-way coupled CFD and acoustic solvers, also called Computational Aeroacoustics (CAA) solvers. Out of these three types, CAA accounts for both the geometry of the equipment generating the internal SPL, but also models the complex interaction between hydrodynamics and acoustics, including tones generated by cavities. While the advantage in terms of output is significant, CAA comes at a large computational cost due to the requirements in space and time discretization that must be satisfied to properly resolve the frequency range from 12.5 Hz to 20 kHz. The CAA methodology presented in this paper is validated against two sets of data obtained in laboratory conditions for Mach numbers ranging from 0.08 to 0.36. Then the same methodology is applied to the specific design of the choke valve. The obtained outputs in form of an acoustical efficiency and peak frequency are then used to tune the IEC 60534-8-3 method, this allows accurate estimation of internal SPL for the given geometry. The combination of the CAA and IEC enables efficient consideration of the actual geometry of the choke with regards to internal SPL prediction against a wider range of conditions without requiring a larger set CAA calculations. The methodology presented in this paper can be applied to similar problems ensuring faster and more accurate results compared to the other available industry practices like physical testing.

Publisher

OTC

Reference10 articles.

1. Numerical eduction of active multi-port data for in-duct obstructions;Sack;Journal of Sound and Vibration,2017

2. Assessment of pulsation levels within a non-straight closed branch on a manifold;Macchion

3. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities;Shur;International journal of heat and fluid flow,2008

4. Aero-acoustics of flow duct singularities at low mach numbers;Åbom;12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference),2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3