An Overview of the Development of Ice Ridge Keel Strengths Test Program

Author:

Bailey Eleanor1,Bruce Jonathon2,Derradji-Aouat Ahmed3,Lau Michael3

Affiliation:

1. CARD

2. C-CORE

3. National Research Council of Canada

Abstract

Abstract The Development of Ice Ridge Keel Strengths is a four-year collaborative venture between the C—CORE Centre for Arctic Resource Development (CARD) and the National Research Council – Ocean, Coastal & River Engineering (NRC-OCRE). The main focus of the project is to investigate the failure mechanisms associated with gouging ice ridge keels and the conditions under which these keels will continue to gouge without failure. This is important for the design of subsea structures in shallow waters, where ice keels have been observed to scour the sea floor, posing a threat to pipelines and subsea infrastructure. A series of near full-scale keel-gouge tests were carried out to investigate the strength characteristics of a first-year ice keel and its subsequent failure as it was pushed into an artificial seabed. The ice keels were constructed using freshwater ice blocks with a nominal thickness of 10 cm, produced in a cold storage facility prior to the start of the test program. The ice keels were constructed with the aid of a keel former that produced idealized keel geometries of 1.7 m depth, 4 m length and 3.5 m width. Once constructed, the keels were lowered into the water and left overnight to consolidate with air temperatures held at −20°C. The keel samples were tested using a custom-built frame that was designed and used in the Pipeline Ice Risk Assessment and Mitigation (PIRAM) Joint Industry Project. The frame applied a vertical surcharge load to the top of the keel whilst a soil tray was displaced horizontally, causing the bottom of the ice keel to interact with an artificial seabed. A total of ten keel tests were conducted in this test program. The parameters varied were the initial temperature of the ice (−3° and −18°C), the initial surcharge pressure (5–60 kPa), the soil tray velocity (1–20 mm s−1) and the consolidation time (19–48 hrs). An overview of the test program and preliminary results are discussed.

Publisher

OTC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3