Review and Comparative Study of Methodologies for Hydrodynamic Analysis of Nearshore Floating Solar Farms

Author:

Zhang Chi1,Santo Harrif1,Magee Allan Ross1

Affiliation:

1. Technology Center for Offshore and Marine, Singapore

Abstract

Abstract The ocean surface offers enormous potential for generating renewable energy, but cost-effective, reliable, and robust systems are needed. Developing floating solar farms (FSF) can contribute to the process of reducing carbon emissions. However, the rational methodology for hydrodynamic analysis of floating solar farms is still not well established. This paper aims to identify a suitable methodology for the analysis of floating solar farms for mild and moderate environments in nearshore, and eventually deeper offshore deployments. This paper reviews the various type of FSFs developed in recent years and the methodologies applied to evaluate their hydrodynamic performance. Following that, the paper focuses on assessing three potential methodologies for the evaluation of the hydrodynamic performance of articulated FSFs in a nearshore region. The three methods are the two-step approach with multi-body radiation and diffraction analysis, hydroelastic/generalized mode method, and empirical approach utilizing Morison's equation. To evaluate these methods, a simplified small-scale FSF which is comprised of 16 articulated box-type modules, is established. A soft mooring system is introduced to constraint the horizontal motion of the farm. The small-scale farm is representative of a typical large FSF in the nearshore region of Singapore. Numerical models of the farm based on the three methods are established separately, and the dynamic responses of the farm are simulated and analyzed. The motion response operators of the modules of the FSF covering the typical wave periods in nearshore conditions are obtained, and the results from the three methods are evaluated in terms of their efficiency and accuracy. It is found that the three methods show consistent results of the dynamic responses of the solar farm in long waves. However, some discrepancies are present in short waves, mainly due to the increasing importance of hydrodynamic interactions which are neglected in one of these methods. The results could be a useful reference for the design and hydrodynamic analysis of similar FSFs.

Publisher

OTC

Reference33 articles.

1. Recommended practice for planning, designing, and constructing fixed offshore platforms—Working stress design;API (American Petroleum Institute);API Recommended Practice 2A-WSD (RP 2A-WSD),2007

2. Hydrodynamic Analysis of Floating Offshore Solar Farms Subjected to Regular Waves;Al-Yacouby,2020

3. Babarit, A., & Delhommeau, G. (2015, September). Theoretical and numerical aspects of the open-source BEM solver NEMOH. In 11th European wave and tidal energy conference (EWTEC2015).

4. Bellini, E. (March2020). Floating PV learning from the aquaculture industry. Available at: https://www.pv-magazine.com/2020/03/23/floating-pv-learning-from-aquaculture-industry/ (accessed January 9, 2022).

5. Borvik, P.P. (2017). Experimental and Numerical Investigation of Floating Solar Islands (Master's thesis, NTNU).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Floating Solar PV Systems—Global Research Reported in the Year 2022;Lecture Notes in Mechanical Engineering;2023-12-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3