Pseudocode and Demonstration of a Multi-Use Artificial Intelligence Algorithm to Perform Challenging and Highly Optimised Pipeline/Cable Routing Cases

Author:

Lim Nigel1,Lim Lucas1,Komatineni Haribabu1

Affiliation:

1. Genesis

Abstract

Abstract The process of routing energy conduits (pipelines, cables and umbilicals) in offshore locations represents a critical phase in the concept planning, engineering and construction of these assets. The downstream impact of poorly designed routes is epitomized by a) increased offshore construction durations b) requirements for additional engineered mitigations from geophysical / geotechnical constraints and c) unforeseen requirements for intervention during operations. The cause of these unoptimized routes can be due to low-level engineering tasks which confines to repetitive, inefficient, and unnecessarily iterative processes between draughters, engineers and asset owners. The increasing accessibility and advancement of digital technologies enables highly optimised solutions even through difficult offshore regions. To address the above, this paper presents the scoping, development and application of a multi-functional algorithm created using modern software code frameworks. The algorithm serves as building blocks into an artificial intelligence platform. This routing algorithm simulates, expands and adapts to engineering and consulting expertise from a worldwide network of energy experts. This recreation of expertise firstly identifies commonly encountered routing constraints such as geophysical features, seabed gradients, existing offshore facilities etc. Ideal geometric parameters are then determined to minimise route costs. These processes are then increased, thus enhancing expertise through scale. The algorithm structure will be presented in summarised minimal pseudocode. The pseudocode will present the application programming interface (API) between the constraints based and end parameter calculation approach. The API includes digital innovations such as a) processing of offshore geotechnical survey data, b) recreating offshore locales and routes in a data environment, c) implementation of geospatial intersection detection, d) 3-dimensional route length optimisation and e) automated route selection criteria. This will demonstrate the order of magnitude replication of subject matter expertise into a digital realm, thus eliminating time-consuming, repetition and human error. Finally, the application of the algorithm will be demonstrated by various case studies of offshore locales with challenging conditions such as highly disturbed seabeds and large quantities of existing man-made assets. The front-end cloud platform of the algorithm will be exhibited, showing a streamlined approach and improved routing engineering. Through this, engineers in the future offshore energy developments can answer the question "What is the best route?".

Publisher

OTC

Reference9 articles.

1. Cost Effective Pipeline Route Selection: An Exact Analytical Solution;Asad;Journal of Intelligent Transportation and Urban Planning,2015

2. Dynamic Map Pathfinding Using Hierarchical Pathfinding Theta Star Algorithm;Darwin;Journal of Theoretical and Applied Information Technology,2021

3. Optimisation of pipeline route in the presence of obstacles based on a least cost path algorithm and laplacian smoothing;Kang;International Journal of Naval Architecture and Ocean Engineering.,2017

4. Medvedeva, Oxana & Chilikin, A. (2021). The Route Selection Method for Natural Gas Pipelines. IOP Conference Series: Materials Science and Engineering. 1079. 042073. 10.1088/1757-899X/1079/4/042073.

5. A* algorithm for GIS-based pipeline route selection in Veracruz;Moreno-Bernal,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3