Understanding the Interactions at Rock-Water and Oil-Water Interfaces during Controlled-Salinity Water Flooding

Author:

Belhaj Ahmed Fatih1,Singh Navpreet1,Sarma Hemanta Kumar1

Affiliation:

1. University of Calgary

Abstract

Abstract Over the years, laboratory studies and a limited number of field trials have demonstrated the potential of enhancing oil recovery using controlled-salinity water flooding. The injected brine composition is one of the promising techniques that could alter the wettability of carbonate rocks by changing the concentration of the potential determining ions (PDIs), specifically Ca2+, Mg2+, and SO42− ions. In this study, a comprehensive experimental study was conducted to investigate the rock-fluid and fluid-fluid interactions at rock-water and oil-water interfaces. The first step of the study was to measure the interfacial tension (IFT) using the spinning-drop tensiometer and study the dynamic behavior of the oil-water interactions. The zeta potential of carbonate rock samples was then measured using a specially-designed zeta potentiometer capable of utilizing the whole core plug, rather than the pulverized samples. The streaming potential technique was used for the zeta potential measurements and the experiments were conducted under different modified brine composition and rock saturation conditions. Subsequently, wettability alteration experiments were conducted using a specially designed high-pressure high-temperature (HP/HT) cell. The IFT measurements showed an increasing trend as salinity decreases, clarifying that rock-water interactions are more dominant over oil-water interactions. Results of the zeta potential experiments showed a clear trend of yielding more negative values as the seawater gradually diluted down to 1%dSW, due to the expansion of the electrical double layer. On the other hand, when the brine composition was modified, the increase of the PDIs (Ca2+ and Mg2+) did not have as much impact on zeta potential as the SO42− ions. In the wettability alteration experiments, both diluted and composition-modified brine generated a higher imbibition rate, resulting in a higher total oil production when compared with the experiments using the seawater. Furthermore, the wettability alteration of the rock surface trended more towards water-wetness conditions, as inferred from the contact angle measurements. The measurement of zeta potential before and after wettability alteration tests showed that the zeta potential value became less negative after the experiment, which suggested the expulsion of oil from the rock. This was further verified by the measurements of zeta potential for the unsaturated rock and saturated rock with brine and oil. The findings from this study would provide a better understanding of the rock-fluid and fluid-fluid interactions during controlled-salinity water flooding, which will benefit future studies in this area.

Publisher

OTC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3