Machine Learning for Improved Directional Drilling

Author:

Pollock Jacob1,Stoecker-Sylvia Zachary1,Veedu Vinod1,Panchal Neil2,Elshahawi Hani2

Affiliation:

1. Oceanit Laboratories, Inc.

2. Shell International E&P Inc.

Abstract

Abstract Directional drilling is a complex process involving the remote control of tool alignment and force application to a very long drill string subject to variable external forces. Controlling bit tool face orientation while ensuring adequate rate of penetration (ROP) is quite challenging, with aspects that have been described as more art than science. Improving this control helps preserve proper well trajectory and eliminate deviations that require corrective measures and add to well costs. An artificial intelligence system was developed to learn from the actions of expert directional drillers and the mechanics of drilling simulations. Machine learning algorithms were employed to improve the efficiency of directional drilling: optimized ROP, less tortuous borehole, less personnel on board (POB), and consistency across operations. The system ingests historical and simulation data corresponding to the information used and actions taken by expert directional drillers and uses that data to generate decisions that result in efficient slide drilling. To create a system for controlling tool face angle and guiding drill bit sliding during directional drilling, relevant historical data from directional drilling operations was gathered. Much of this data was recorded in the drilling logs, which the drilling operator traditionally uses to control drilling parameters. The collected data was then filtered and used to structure and train artificial neural networks and select appropriate hyperparameters. Reinforcement learning methods were used to refine the neural networks trained on historical data. A computational model for drill string physics was used to simulate the mechanics of directional drilling. A successfully trained network was considered one that minimized deviation from planned wellbore trajectory, minimized tortuosity, and maximized ROP. The neural network developed could replicate the decisions of expert directional drillers within a small error (<3%). Reinforcement learning was then successfully used to improve network performance, particularly for conditions not previously considered. Since the algorithm has demonstrated competence in the historical and simulated realms, it will be further tested as a real-time advisory system for control of directional drilling operations. The system will be tested in simulation with an expert directional driller before use in a field drilling operation. Ultimately, the algorithm can be directly integrated into drilling operations, enabling fully automated directional drilling.

Publisher

OTC

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3