Novel Dynamically Installed Fish Anchor - Diving Upon Loading in Calcareous Silt

Author:

Chang K.1,Hossain M. S.1,Kim Y. H.1,Randolph M. F.1,Wang D.2

Affiliation:

1. The University of Western Australia

2. Ocean University of China

Abstract

Abstract This paper proposes a novel dynamically installed ‘fish’ anchor, adopting a geometry taken from nature, for economic and safer tethering of floating facilities in deep water. Every cross section of the fish anchor shaft is elliptical, leading to very low drag resistance during free fall through the water column, and also low resistance in penetrating the seabed sediments. The padeye is fitted on the widest part of the shaft to mobilise the maximum resistance area under operational loading. The fish anchor embedment depth during dynamic installation, and capacity under both monotonic and cyclic operational loading in calcareous silt were assessed through centrifuge model tests and large deformation finite element (LDFE) analyses. During dynamic installation, the normalised tip embedment depth of the fish anchor was typically three times that for the torpedo anchors and 50 % greater than that for the OMNI-Max anchors. Under operational loading, the fish anchor dived deeper, reaching penetrations 20 to 60 % greater than achieved during installation. By contrast the torpedo anchors (for all mooring mudline inclinations) and the OMNI-Max anchors (apart from a single test with mooring mudline inclination of 0°) pulled out directly without diving, reflecting insufficient free-fall penetration in calcareous soil. Regardless of the padeye offset ratio and mooring mudline inclinations, the diving efficiency of the fish anchor, which dictates the potential gaining capacity, was significantly higher than that of the OMNI-Max anchor. The normalised net capacity of the fish anchor was significantly higher than obtained with the torpedo anchors regardless of mooring mudline inclinations, and comparable to that obtained with an OMNI-Max anchor for mooring mudline inclination 0°, after allowing for loading-unloading cycles experienced by the OMNI-Max DIA prior to a nominally monotonic loading test. Dynamically installed anchors have yet to be used in calcareous silty sediments (e.g. offshore Australia). This is primarily because the anchor tip embedment depth in calcareous silt has been found to be only half of that in clay due to the naturally higher undrained shear strength gradient and high dilation-induced bearing and shaft resistance. During subsequent loading, the anchor then pulls out of the seabed, without diving. To achieve adequate capacity under operational loading, deeper penetration that allows anchor diving and better diving potential are therefore critical in calcareous silt. The fish anchor was found to dive in calcareous silt for mooring mudline inclinations < 38°, while by contrast the OMNI-Max anchor generally did not dive. As such, the fish anchor has the potential for efficient anchoring to allow economic development of oil and gas reserves in deep water with calcareous seabed sediments.

Publisher

OTC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Field Performance of the Fish Anchor;Journal of Geotechnical and Geoenvironmental Engineering;2023-02

2. Fish Anchor Testing in the Swan River;Day 2 Wed, March 23, 2022;2022-03-18

3. Fish anchor diving behaviour: confirmation through field tests in the Swan River;Géotechnique Letters;2022-03

4. Performance of a Novel Dynamically Installed Fish Anchor in Calcareous Silt;Journal of Geotechnical and Geoenvironmental Engineering;2019-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3