Analysis of Carbon Footprint Applied to Conceptual Engineering of Offshore Production Units

Author:

Basilio Leandro Pereira1,Machado Priscilla Badega1,Sousa Débora Calaza de1,Barbosa Agremis Guinho1,Juliano Diego Russo2,Boeira Pauline Santa Rosa Simões Drummond2,Andreotti Marcelo3

Affiliation:

1. Deep Seed Solutions

2. Shell Brasil Petróleo Ltda.

3. Repsol Sinopec Brasil

Abstract

Abstract As the environmental impact is critical for industry sustainability, early quantifying Greenhouse Gas (GHG) emissions of offshore units represents a central role and step-change improvement across the O&G value chain. Developing an overarching realistic model to estimate GHG emissions is a challenge due to the different methodologies available, the complexity of offshore installations, and the degree of uncertainty in the estimation of emission factors. The present work focuses on the earlier stages of new development, notably in Front End Loading-1 (FEL-1) and FEL-2, i.e., opportunity identification and conceptual engineering studies, respectively. The primary objective of this study is to propose an innovative modeling methodology to quantify Greenhouse Gas (GHG) emissions in offshore production facilities. Since E&P companies consider current and future carbon dioxide equivalents (CO2e) emissions as a factor into capital projects economics, this study additionally proposes a semi-empirical model for OPEX calculation considering the impact related to emissions (on a CO2e basis). Emissions of GHG in the O&G industry typically occur from one of the following general source classes: (i) combustion sources, including both stationary devices and mobile equipment; (ii) process emissions and vented sources; (iii) fugitive sources; and (iv) indirect sources. The projection of carbon emission costs along the asset life cycle is performed to simulate the economic impact of such emission on an OPEX perspective. After estimating the CO2e emissions, the procedure consists of using the "Carbon Emission Cost Projection" to calculate the cost of the CO2 emitted and penalize the OPEX of the evaluated alternative. The proposed model can be used to estimate Carbon Footprint for each one of the several conceptual engineering alternatives evaluated during the conceptual phase of the project, improving not only the techno-economic analysis but also the decision-making process of Capital Projects in the O&G Industry.

Publisher

OTC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Building a Sustainable Life Cycle Cost Efficiency Model;Day 4 Fri, March 25, 2022;2022-03-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3