Buzios Presalt Wells: Delivering Intelligent Completion In Ultra-Deepwater Carbonate Reservoirs

Author:

Schnitzler Eduardo1,Gonçalez Luciano Ferreira1,Roman Roger Savoldi1,Marques Marcello1,Gutterres Fábio Rosas2,da Silva Manoel Feliciano1,Castilho Carlos Alexandre Belo1

Affiliation:

1. Petrobras

2. Former Petrobras employee

Abstract

Abstract This paper describes the challenges faced on the deployment of intelligent well completion (IWC) systems in some of the wells built in Buzios field, mostly related to heavy fluid losses that occurred during the well construction. It also presents the solutions used to overcome them. This kind of event affects not only drilling and casing cementing operations, but may also prevent a safe and efficient installation of the completion system as initially designed. The IWC design typically used in Brazilian pre-salt areas comprises cased hole wells. Perforation operations must be performed before installing the integral completion system, as it does not include a separation between upper and lower completion. Therefore, the reservoir remains communicated to the wellbore during the whole completion installation process, frequently requiring prior fluid loss control as to allow safe deployment. Rock characteristics found in this field make it difficult to effectively control losses in some of the wells, requiring the use of different well construction practices that led to the development of some new well designs. The well engineering team developed a new well concept, where a separated lower completion system is installed in open hole, delivering temporary reservoir isolation. This new well architecture not only delivers reduced drilling and completion duration and costs, but also provides the IWC features in wells with major fluid losses. This is possible by the use of multiple managed pressure drilling (MPD) techniques when required, which were considered since the initial design phase. Safe and effective construction of some wells in pre-salt fields was considered not feasible before the adoption of MPD solutions, both for drilling and completions. Other important aspects considered on the new well design are the large thickness and high productivity of Buzios field reservoirs, as well as the need of some flexibility to deal with uncertainties. Finally, the new completion project was also designed to improve performance and safety on future challenging heavy workover interventions. The well construction area has gradually obtained improved performance in Buzios field with the adoption of the new practices and well design presented in this paper. The new solutions developed for Buzios field have set a new drilling and completion philosophy for pre-salt wells, setting the grounds for future projects. The improved performance is essential to keep these deepwater projects competitive, especially in challenging oil price scenarios. One of the groundbreaking solutions used is the possibility of installing the lower completion using managed pressure drilling techniques.

Publisher

OTC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3