Big Data Analytics for Micro-Seismic Monitoring

Author:

Joshi P.1,Thapliyal R.1,Chittambakkam A. A.1,Ghosh R.1,Bhowmick S.1,Khan S. N.1

Affiliation:

1. Wipro Ltd

Abstract

Abstract Big data technology is applied to analyze massive micro-seismic data set, which incorporates previously over-looked data set. This, in turn, will give redundant fracture modelling in stages and exact fracture propagation map in real time. Micro-seismic is pivotal to the success of Hydraulic Fracturing activity. However, with the advent of advanced geophones, the massive dataset requires a different analytical point of view, currently absent in conventional database processing and algorithms. HADOOP equips with the necessary tools for better and advanced real-time processing and analysis. Various Algorithms are developed to show comprehensive fracture operation analysis. Previous job failures are used to predict future anomalies, hence enhancing success ratio. The holistic dataset for the reservoir (Exploration, Drilling, and Production) are considered to synchronize the reservoir information. For example, drilling data (ROP, drillability, WOB etc.) is analyzed to predict the type of formation (like Brittle or Ductile), poroelastic constant, elasticity etc. Comprehensive analysis of fracture propagation would consider all the parameters associated not just conventional ones. The dataset is stored in Hadoop and called upon whenever needed. The massive amount of dataset is not being processed in conventional databases but can be integrated using Hadoop. The analytical results provided from Hadoop stands out from conventional formulae based software. The visualization of results keeps the minimum scope of error contradicting with the currently used ones. In current ones, many data trends and parameters are left out which are not used in formulae. Those patterns are visually shown and incorporated into the analysis, causing better mapping of fractures. Not only just complementing current analysis, Big Data provides the scope of comprehensive analysis from start to end. When 3D seismic appeared, it was a radical change. It not only showed 2D maps were of low resolution, rather those were rendered misleading. The Hadoop analytics is providing a unique perspective, leaving some mismatches, which are needed and to be seriously considered for future planning. The resulting model does not use conventional formulae, hence not limited to consider the real-time data. Rather field data (associated with noise) is analyzed using algorithms, generating trends from noises and deviations. The conventional software misses massive relevant data, which apparently cannot be incorporated into formulae. That inability is being met with Big Data analytics. Conventional database management is unable to handle so much data, which are being taken care off by Hadoop platform.

Publisher

OTC

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Comprehensive Review on Big Data for Industries: Challenges and Opportunities;IEEE Access;2023

2. Data Preprocessing Technology in Pipeline Health Monitoring;Pipeline Inspection and Health Monitoring Technology;2023

3. Petrochemical industry digital transformation from the perspective of big data : A survey;2022 International Conference on Frontiers of Communications, Information System and Data Science (CISDS);2022-11

4. Big-data-driven carbon emissions reduction;Big Data Mining for Climate Change;2020

5. A Study on Seismic Big Data Handling at Seismic Exploration Industry;Intelligent Computing and Innovation on Data Science;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3