Applications of Adaptive Sampling Strategies of Autonomous Vehicles, Drifters, Floats, and HF-Radar, to Improve Loop Current System Dynamics Forecasts in the Deepwater Gulf of Mexico

Author:

DiMarco Steven Francis1,Glenn Scott M2,Jaimes de la Cruz Benjamin3,Jiménez Rosalinda Monreal4,Knap Anthony Hayden1,Liu Yonggang5,Magnell Bruce6,Mahmud Sakib1,Miles Travis N2,Pallas-Sanz Enric7,Ramos Rafael6,Salas de León David Alberto4,Shay Lynn Keith3,Smith Michael2,Tenreiro Miguel7,Weisberg Robert H5

Affiliation:

1. Texas A&M University

2. Rutgers University

3. University of Miami

4. Universidad Nacional Autónoma de México

5. University of South Florida

6. Woods Hole Group LLC

7. CICESE

Abstract

AbstractThe Gulf of Mexico holds vital natural, commercial, and societal resources. A diverse array of stakeholders (which includes the offshore energy sector, climate scientists, living resources managers, recreational and commercial fishing industry, tourism, navigation, homeland security, the National Weather Service, oil spill, tropical weather forecasters) rely on accurate and timely prediction of the deepwater dynamics to perform safe operations and to understand the complex interactions of the earth climate and weather system. A strategy to improve predictive skill of numerical ocean circulation models of the deepwater Gulf of Mexico using adaptive sampling of in situ oceanographic observational platforms, which includes autonomous vehicles, buoyancy gliders, floats, drifters, and high-frequency radar is described. Profiling platforms, i.e., gliders and floats, will collect co-located estimates of temperature, salinity, and current velocity, to provide estimates of the total kinematic vertical water-column structure. The observations will be made available to numerical circulation modelers for injection into data assimilation routines and for model skill assessment, validation, and data denial experiments. The activities, to take place in 2023 to 2027, are focused on the Mini Adaptive Sampling Test Run, i.e., MASTR, (summer 2023) and the Grand Adaptive Sampling Experiment, GrASE (2024-2025).

Publisher

OTC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3