Boundary Detection Ahead of the Bit – A Sensitivity Study of Extra Deep Azimuthal Resistivity

Author:

Larsen David Selvåg1,Boesing David1,Hartmann Andreas1,Martakov Sergey1,Mumtaz Asim1,Skillings Jon1,Vianna Armando1

Affiliation:

1. Baker Hughes a GE company

Abstract

Abstract The opportunity to detect boundaries ahead of the bit has long been a desire within the oil and gas industry as it would allow precise geo-stopping prior to entering unwanted formations and/or fluids. There are solutions already available such as the use of seismic applications. However these are for use on a different resolution scale, the accuracy needed for geo-stopping within meters of a formation boundary is lacking. Extra Deep Azimuthal Resistivity (EDAR) has been widely used for geosteering and landing applications around the world utilizing the common methodology of looking around and predicting ahead (see, for example, Larsen et. al., 2016). This methodology has been very efficient in a horizontal drilling environment with fairly low dipping layers, typically when incident angles do not exceed 10-15 degrees. In such wells, the environment ahead of the bit is generally not changing abruptly and therefore provides only a minor contribution to tool response compared to the volume around the tool. For higher incident angles, the zone of interest is likely to be ahead of the bit. Here traditional looking around the wellbore and predicting ahead is no longer sufficient. The steep angle of approaching beds requires sensitivity ahead of the bit in order to detect and predict upcoming resistivity boundaries. In this paper we will study the extended capabilities of the interpretation method currently used only in high angle and horizontal (HA/HZ) well applications. We will present sensitivity analysis of the theoretical capability of detecting ahead of bit with the different key factors determining the capability, such as sensor placement behind bit, formation resistivity and incident angle. The study will show that the application range of EDAR can be extended from the 15° incident angle range to up to 90° incident angle. The extension allows using the service for low angle geo-stopping applications. The analysis is performed on theoretical data as well as a case study from a well in the Middle East.

Publisher

OTC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3