Effect of substratum types on the growth of assimilators and stolons of <italic>Caulerpa okamurae</italic> (Bryopsidales, Chlorophyta)

Author:

Park Seo Kyoung,Kim Jang K.,Choi Han Gil

Abstract

To examine the effects of substratum types on the growth of Caulerpa okamurae, sand surface and sand burial experiments were conducted. Five assimilators (erect fronds) per replicate were cultured for 15 d on the surface of three different treatments: fine sand (200 μm), coarse sand (600 μm), and no sand (control). Also, three stolons and three assimilators were buried by fine grain or coarse grain sands and incubated for 15 d. In both experiments, other culture conditions included 25°C, 30 μmol photons m-2 s-1, and 16 : 8 h L : D (light : dark). In both experiments, stolon + assimilator-, assimilator-, and stolon-weights were measured. Relative growth rates (RGRs) of stolon + assimilator weights ranged from 0.43 to 1.95% d-1 at no sand and fine sand treatment, respectively. RGRs for the weight of stolon + assimilator and new assimilators were significantly greater on the fine- and coarse sand surface than the control. In the burial experiments, RGRs of stolons (4.28% d-1 at coarse sand and 5.57% d-1 at fine sand, respectively) were significantly greater than those of assimilators (1.38% d-1 at fine sand and 1.82% d-1 at coarse sand, respectively). When stolons were buried, RGRs for assimilators were greater at the fine sand than at the coarse sand treatment. On the other hand, RGRs of buried assimilators for total frond weights and for newly produced stolons were significantly greater at the coarse sands than at the fine sands. In conclusion, C. okamurae grew well with all substrates of sands and showed better growth on fine sands than coarse ones. This result suggests that the growth of stolons and assimilators of C. okamurae is stimulated after stable attachment to the sand substrates by rhizophores. In addition, stolons showed higher growth rates than the assimilators in the sand burial states, indicating that stolons are more tolerant to low light than assimilators of C. okamurae.

Funder

Wonkwang University

Publisher

The Korean Society of Phycology

Subject

Plant Science,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3