An Efficient Numerical Simulation of 2D Natural Convection in an Inclined Cavity with Internal Heat Generation Using Differential Quadrature Method

Author:

ALESBE Israa,ALJABAIR Sattar,JALIL Jalal M.

Abstract

Natural laminar convective fluid flow has been simulated inside inclined rectangular cavities with and without internal heat generation for different aspect ratios and inclination angles. The most important basic dimensionless parameters for this problem are the external Rayleigh number (RaE) and the internal Rayleigh number (RaI), where RaE refers to the effects of the differential heating of the side walls and RaI refers to the amount of heat produced internally. Results were obtained for 4 cases with 192 tests: case (1), RaI = 0 without internal source generation, and cases (2, 3, and 4) with internal source generation for RaI = RaE, 10 RaE, and 100 RaE, respectively. In all cases, the parameters of study changed as 103 ≤ RaE ≤106, 0 ≤ RaI ≤ 107, inclination angle from 0 to 60 deg., and aspect ratios of the enclosure from 0.5 to 2. Results were represented graphically for flow and thermal fields as a streamline, isothermal contours, and Nusselt number. The computed results show that the strength of convection currents is measured by the internal energy. Finally, it is illustrated that by using a few grid points and a shorter CPU time for calculation, the present method can produce accurate numerical results. Also, increase in RaI leads to increasing heat transfer rate and its direction out from the cavity at both hot and cold walls. For lower values of RaI, heat transfer diffusion is more prominent, while for higher values of RaI, convection outweighs diffusion. HIGHLIGHTS Natural laminar convective fluid flow inside inclined rectangular cavities with and without internal heat generation for different aspect ratios and inclination angles has been simulated The most important basic dimensionless parameters, the external Rayleigh number (RaE) and the internal Rayleigh number (RaI) are studied DQ method performance was excellent The obtained computational results indicate that the strength of the convection currents depends on the internal energy Accurate numerical results can be obtained by the present method using a few grid points and shorter CPU time for calculation GRAPHICAL ABSTRACT

Publisher

College of Graduate Studies, Walailak University

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3