Water Quality Measurements with a Simple Molecular Analysis (PCR-RFLP) of the Microbiome in a Metropolitan River System in Japan

Author:

NENENG LiswaraORCID,NUGROHO Rudy Agung,KOMAI Yukio,TAKAYAMA Naru,KAWAMURA Koji

Abstract

Urbanization has affected natural freshwater environments by contamination with sewage, toxic chemicals, and excess nutrients, which cause algal bloom, pollution, and ecosystem degradation. To ensure sustainable use of natural waters, appropriate monitoring methods are required. This study aims to investigate the diversity of the microbial community in a metropolitan river system in Japan using a low-cost DNA-based approach, PCR (Polymerase Chain Reaction)-RFLP (Restriction Fragment Length Polymorphism), as a potential bioindicator of environmental change. Surface waters were sampled in seven sites in a river system. Water chemical parameters and concentrations of heavy metals were determined. Microbial DNA was extracted from the samples, ribosomal RNA was amplified with universal primers, and RFLP was scored by agarose gels. Water chemical analyses showed that surface water at the inflow point of a sewage treatment plant had signs of eutrophication. Heavy metal concentrations in surface water were low (< 0.01 ppm) in all sites. The PCR-RFLP analysis showed polymorphisms both in 16S and 18S rRNAs, indicating that the method can detect at least a part of the microbiome changes in a river system. Sequencing of some fragments found the sequence close to a ciliate isolated in wastewater treatment plants, implying contamination from sewage. Principal component analysis (PCA) identified the RFLPs associated with chemical water parameters, which could be bioindicators of environmental pollution. We also found the RFLPs independent of water quality parameters, suggesting that this simple DNA-based analysis can also detect biological changes in water ecosystems that are not quantified by chemical measurements of water quality.

Publisher

College of Graduate Studies, Walailak University

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3