Modelling and Optimization of A Light Trapping Scheme in A Silicon Solar Cell Using Silicon Nitride (SiNx) Anti-Reflective Coating

Author:

Zambree Aliah Syafiqah,Yahaya Bermakai Madhiyah,Mohd Yusoff Mohd Zaki

Abstract

Solar cells system has been gaining remarkable attention in the photovoltaic (PV) industry in recent years. Therefore, many people used solar cells in their life. Hence, from time to time, many industries keep improve it to get the best of efficiency of the solar cell. In this work, it presents ray tracing of light trapping (LT) schemes in thin c-Si to enhance broadband light absorption within 300 - 1,200 nm wavelength region. For the ray tracing simulation, mono c-Si wafer with 100 μm thickness is investigated and solar spectrum (AM1.5G) at normal incidence is used. Random planar and upright pyramid front surface with silicon nitride (SiNx) anti-reflective coatings (ARC) with the difference thicknesses are the LT schemes being studies in this work. The broadband anti-reflective coating can effectively reduce the optical loss and improve the energy efficiency in the solar cells. The optical properties of the thin c-Si are analyzed with incremental LT schemes. Not only that, the current density also calculated from the absorption curve. Optical properties and current density were evaluated to find out the best thickness and refractive index of the silicon nitride (SiNx). The initial simulation results show that the solar cell current density is about 24.81 mA/cm2. A great Jmax enhancement in solar cell was achieved with utilizing the ARC thickness and type of front surface. Among the 6 proposed scheme, the scheme with upright pyramid front surface of 75 nm SiNx ARC thickness realized a good improvement in current density of 41.19 mA/cm2. This leads to Jmax enhancement of 66.02 % when compared to the reference c-Si. HIGHLIGHTS Solar cell energy conversion efficiencies for commercially available multicrystalline silicon solar cells are around 14 - 20 % which still insufficient Energy conversion efficiency of solar cell can be enhanced by adding the anti-reflective coating on the front layer of light trapping scheme SiNx as a single layer anti-reflective coating with a certain thickness shown a good behavior in reducing the light reflection hence, effectively absorbing more light into the scheme and leads to enhancing the energy conversion efficiency GRAPHICAL ABSTRACT

Publisher

College of Graduate Studies, Walailak University

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3