Abstract
La espectroscopia de reflectancia en el infrarrojo cercano (NIRS) permite estimar la composición química de diversas muestras, (ingredientes, productos de origen animal, etc.); sin embargo, existe poca información de su uso con muestras de digesta ileal (DI) o heces (H) de cerdo; por lo que el objetivo fue desarrollar ecuaciones de predicción basadas en el método de cuadrados mínimos parciales para predecir la composición química de DI y H a través de un NIRS. Se utilizaron 110 muestras de DI y 202 de H de experimentos de digestibilidad, obteniéndose su espectro y mediante un modelo multivariado se desarrolló el método de predicción. Las variables analizadas en la DI fueron: proteína cruda (PC), Leucina (Leu), lisina (Lys) y treonina (Thr) y en las H: materia seca (MS), PC y energía (E). Los valores en DI fueron: PC: R2 0.98, error estándar de calibración (SEC) 0.330, error estándar de predicción (SEP) 0.640; Leu: R2 0.95, SEC 0.040, SEP 0.102; Lys: R2 0.93, SEC 0.077, SEP 0.143; Thr: R2 0.67, SEC 0.209, SEP 0.187. En H fueron PC: R2 0.98, SEC 0.95, SEP 1.19; E (kcal/kg): R2 0.94, SEC 60.8, SEP 95.3; MS: R2 0.87, SEC 0.83, SEP 1.15. Los resultados muestran que la robustez de la calibración (DE/SEP) fue buena para PC, 3.34, Leu 2.07 y Lys 2.48 y regular para Thr 1.94, la predicción (RPD) fue buena para PC 2.11 en la DI. En H las R2 fueron altas para PC 0.98 y E 0.94. La mayor robustez fue para PC 5.59 y su predicción fue excelente 4.16 y buena para E 2.53. Se concluye que el NIRS puede predecir la PC en la DI y la PC y E en H. Para mejorar la estimación de aminoácidos en DI deben explorarse las causas que afectan la robustez de las calibraciones.
Publisher
Revista Mexicana de Ciencias Pecuarias
Subject
General Veterinary,Animal Science and Zoology