Estimación de masa de forraje en una pradera mixta por aprendizaje automatizado, datos del manejo de la pradera y meteorológicos satelitales

Author:

Guevara-Escobar AurelioORCID,Cervantes-Jiménez MónicaORCID,Lemus-Ramírez VicenteORCID,Yabuta-Osorio Adolfo KunioORCID,García-Muñiz José GuadalupeORCID

Abstract

Medir la masa de forraje (MF) en la pradera, antes del pastoreo, es fundamental para determinar la asignación diaria de forraje en sistemas pastoriles de producción animal. La MF se estima por corte de forraje en áreas conocidas, utilizando ecuaciones alométricas, o con el uso de sensores de percepción remota (PR); sin embargo, la exactitud y practicidad de los distintos métodos para estimar la MF, es variable. El objetivo fue obtener modelos predictivos usando variables ambientales y del manejo de la pradera para predecir la MF. Se ajustaron modelos de regresión para estimar la MF con base en variables del manejo de la pradera (MP) o mediciones obtenidas por PR, como reflectancia, temperatura del aire y lluvia. Por tres años se estudió una pradera mixta pastoreada con bovinos productores de carne. Con 80 % de datos se modeló por mínimos cuadrados  ordinarios  (OLS)  o por algoritmos de aprendizaje  automatizado  (ML). El 20 % restante de los datos se utilizó para validar los modelos usando el coeficiente de determinación y el sesgo promedio entre valores estimados y observados. El modelo base de estudio fue la relación entre la altura de la pradera antes del pastoreo y la MF de este modelo se ajustó usando OLS; la r2 fue 0.43. Cuando se ajustaron modelos que incluyeron variables del MP, la r2 fue 0.45 para OLS y 0.63 para ML. Al ajustar modelos con variables de MP y PR, la r2 fue 0.71 para OLS y 0.96 para ML. Los ensambles de modelos ajustados con ML redujeron el sesgo de estimados de MF de la pradera examinada. En general, los modelos de ML representaron mejor la relación entre altura de la pradera antes del pastoreo y MF que los de modelos de OLS, al ajustarlos con variables de manejo de la pradera y con información de PR. Los modelos de ML pueden usarse como herramienta para la toma de decisiones diaria en sistemas productivos pastoriles.

Publisher

Revista Mexicana de Ciencias Pecuarias

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3