Ultraviolet Radiation to control Bacteria in oil well injection water
-
Published:2021-06-30
Issue:1
Volume:11
Page:5-9
-
ISSN:2382-4581
-
Container-title:CT&F - Ciencia, Tecnología y Futuro
-
language:
-
Short-container-title:CT&F Cienc. Tecnol. Futuro
Author:
Niño Gomez Jhorman AlexisORCID, Jaimes Prada RonaldORCID, Echeverria Restrepo Victor Julio, Acero Reyes Julia RaquelORCID, Gonzalez Rodriguez Alexandra Milena, Cardeñosa Mendoza Mauricio, Torres Saez Rodrigo GonzaloORCID
Abstract
Biocorrosion is a phenomenon that strongly affects the integrity of the materials used in the oil and gas industry. Different types of biocides are currently used to control bacteria in industrial water; however, they have disadvantages such as microbial resistance to these chemical compounds and possible impact on biodiversity due to eventual contamination of natural water. There are several alternatives for the elimination or control of bacteria, among which one is the use of type C ultraviolet (UV-C) radiation. Nevertheless, the use of these micro-organism removal systems could be affected by water quality and its efficiency can be improved by using LED diodes of lower energy consumption and greater versatility in exposure to high temperatures. This work was aimed to evaluate the use of such radiation as a strategy for the control and/or elimination of sulfate reducing bacteria (SRB), and acid producing bacteria (APB) present in both corrosion and souring processes. For this purpose, injection water from oil and gas industry and a dynamic system which flow variation enabled the evaluation of different water exposure times to UV-C light (1-20 minutes) were used. Efficiencies ranging between 99-100% were achieved in the elimination of SRB and APB from produced water measured by two different techniques, selective culture media for these microbial populations, and qPCR detecting a specific gene from the SRB population.
Funder
Ecopetrol Universidad Industrial de Santander
Publisher
Instituto Colombiano del Petroleo
Subject
General Energy,General Chemical Engineering,Geology,Geophysics,Fuel Technology,Renewable Energy, Sustainability and the Environment,Engineering (miscellaneous)
Reference15 articles.
1. Elsayed, N. A., Barrufet, M. A., Eljack, F. T., & ElHalwagi, M. M. (2015). Optimal design of thermal membrane distillation systems for the treatment of shale gas flowback water. International Journal of Membrane Science and Technology, 2, 1-9. https://doi.org/10.15379/2410-1869.2015.02.02.01. 2. Veil, J. A., Puder, M. G., Elcock, D., & Redweik Jr, R. J. (2004). A white paper describing produced water from production of crude oil, natural gas, and coal bed methane (No. ANL/EA/RP-112631). Argonne National Lab., IL (US). https://doi.org/10.2172/821666 3. Texas Water Development Board (TWDB), (2017). Texas water use estimates: 2015 summary (updated October 2, 2017).Https://www.twdb.texas.gov/waterplanning/waterusesurvey/estimates/data/2015TexasWaterUseEstimatesSummary.pdf (Online). 4. Bhojwani, S., Topolski, K., Mukherjee, R., Sengupta, D., & El-Halwagi, M. M. (2019). Technology review and data analysis for cost assessment of water treatment systems. Science of the Total Environment, 651, 2749-2761.https://doi.org/10.1016/j.scitotenv.2018.09.363. 5. Kahrilas, G. A., Blotevogel, J., Stewart, P. S., & Borch, T. (2015). Biocides in hydraulic fracturing fluids: a critical review of their usage, mobility, degradation, and toxicity. Environmental science & technology, 49(1), 16-32.https://doi.org/10.1021/es503724k
|
|