CO2 EOR with in-situ CO2 capture, a Neuquina basin oxycombustion case study

Author:

Gallo GonzaloORCID,Puliti RaulORCID,Torres RodolfoORCID,Eleonora Erdmann ORCID

Abstract

Given the growing interest in the capture and utilization of CO2 in recent years, several technologies have emerged that seek to generate CO2 in-situ at a low cost. There are promising developments, which allow capturing CO2 with sufficient purity to be used for EOR. Oxycombustion has high potential in the region as this technology benefits from gas production with a high CO2 content, which significantly reduces the cost of capture. Additionally, carbon dioxide separation techniques such as air capture, fuel cells, amines, and membranes are considered. Argentina has several fields, which produce gas with high CO2 content benefiting Oxycombustion economics.   The paradigm change not only occurs in technology but also in the implementation schemes. The vast majority of the development of CO2 EOR are carried out in the USA with very low CO2 costs and high availability. When considering the costs of CO2 per ton (metric ton) that could be obtained in Argentina, and financial variables such as high discount rates, it is clear that the injection model has to be optimized for these conditions. In order to optimize profitability, it is crucial to improve the payout time and the usage of CO2. In one hand, smaller slugs lead to better CO2 utilization rates (oil produced/CO2 injected) while larger slugs lead to faster oil production response. We observed that due to the high discount rates in the area, faster production response has a higher economic impact that sweep efficiency or breakthrough times. It seems to be better to sacrifice overall recovery factor in order to extract oil as soon as possible. Optimal injection schemes where found for different scenarios. Additionally, starting the project early is a key parameter for both technical and economic success.    Another key technical difference is that the available CO2 volume for injection is constant due to the nature of these capture techniques. Unlike purchasing CO2 from a pipeline, where gas can be purchased as needed, Oxycombustion (or other capture methods) produces a continuous stream limiting injection flexibility. All produced CO2 must be injected as it is being produced and, until production gas reaches a CO2 content high enough to assure MMP, CO2 injection stream cannot exceed the maximum CO2 capture capacity. CO2 EOR has significant advantages over Chemical EOR due to its significant recovery factors and early response. Additionally, this technology applies to reservoirs of low permeability and / or high temperature where the polymer can have problems of injectivity or degradation. 

Publisher

Instituto Colombiano del Petroleo

Subject

General Energy,General Chemical Engineering,Geology,Geophysics,Fuel Technology,Renewable Energy, Sustainability and the Environment,Engineering (miscellaneous)

Reference20 articles.

1. S. Galbusera (2015). Estado componente mitigación, Proyecto Tercera Comunicación Nacional Sobre Cambio Climático a la CMNUCC, Presentacion de resultados de la 3ra comunicación nacional sobre cambio climático, Instituto Tecnológico de Buenos Aires, Argentina. Retrieved: https://docplayer.es/23556166-Proyecto-tercera-comunicacion-nacional-sobre-cambio-climatico-a-la-cmnucc-estado-componente-mitigacion.html.

2. Azzolina, N. A., Peck, W. D., Hamling, J. A., Gorecki, C. D., Ayash, S. C., Doll, T. E., & Melzer, L. S. (2016). How green is my oil? A detailed look at greenhouse gas accounting for CO2-enhanced oil recovery (CO2-EOR) sites, International Journal of Greenhouse Gas Control, 51, 369-379. https://doi.org/10.1016/j.ijggc.2016.06.008.

3. Qiao, Q., Zhao, F., Liu, Z., He, X., & Hao, H. (2019). Life cycle greenhouse gas emissions of Electric Vehicles in China: Combining the vehicle cycle and fuel cycle, Energy, 117, 222-233. https://doi.org/10.1016/j.energy.2019.04.080

4. David C. Holzman (2008). The Carbon Footprint of Biofuels: Can We Shrink It Down to Size in Time?, Environmental Health Perspect. 116(6), A246–A252, https://doi.org/10.1289/ehp.116-a246.

5. Redacción Agrovoz. (2018). En una década, el biodiésel argentino ahorró el CO2 de 4,2 millones de autos, Retreived from: http://agrovoz.lavoz.com.ar/actualidad/en-una-decada-el-biodiesel-argentino-ahorro-el-co2-de-42-millones-de-autos.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3