Optimization of electrical submersible pump artificial lift system for extraheavy oils through an analysis of bottom dilution scheme

Author:

Díaz-Prada Carlos Andrés,Guarín Arenas Flaminio,González-Barbosa Javier Enrique,García Chinchilla César Augusto,Cotes León Esperanza de Jesús,Rodríguez Walteros Carolina

Abstract

This study presents the analysis of the variables that have the greatest impact on energy requirements for an artificial lift system applied to extra heavy crude oils, considering an uncertainty behavior analysis through their sensitivity in the vertical flow modeling implemented for a Chichimene Field well. The selected variables are the viscosity and fluid density, the required artificial lift system pressure differential, well depth, the flow rate of produced fluids and the dilution percentage. The oil produced in this field has a density of 7,8 API, and the well studied features a water cut of about 10% and produces a total of 2400 BOD. For this flow naphtha dilution rates were defined using up to 20% by volume. The ranges of energy required for the lifting system for different scenarios raised by the analysis variables were also determined. For these conditions a variation of the energy required 20% for a fluid flow incremental of 50 BFOD was obtained, as established from the flow capacity of the well and the pressure required for sustaining a pressure head of 100 psi and 400 psi. Bottom dilution scheme establishes a change in artificial lift system energy requirement, of up to 25% for a 15% of diluter, whereas the relationship between the volumes produced and the system arrays gives an energy efficiency of 40%.

Publisher

Instituto Colombiano del Petroleo

Subject

General Energy,General Chemical Engineering,Geology,Geophysics,Fuel Technology,Renewable Energy, Sustainability and the Environment,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3