Development and Application of a Reduced Order Model for the Control of Self-Sustained Instabilities in Cavity Flows

Author:

Nagarajan Kaushik Kumar,Cordier Laurent,Airiau Christophe

Abstract

AbstractFlow around a cavity is characterized by a self-sustained mechanism in which the shear layer impinges on the downstream edge of the cavity resulting in a feedback mechanism. Direct Numerical Simulations of the flow at low Reynolds number has been carried out to get pressure and velocity fluctuations, for the case of un-actuated and multi frequency actuation. A Reduced Order Model for the isentropic compressible equations based on the method of Proper Orthogonal Decomposition has been constructed. The model has been extended to include the effect of control. The Reduced Order dynamical system shows a divergence in time integration. A method of calibration based on the minimization of a linear functional of error, to the sensitivity of the modes, is proposed. The calibrated low order model is used to design a feedback control of cavity flows based on an observer design. For the experimental implementation of the controller, a state estimate based on the observed pressure measurements is obtained through a linear stochastic estimation. Finally the obtained control is introduced into the Direct Numerical Simulation to obtain a decrease in spectra of the cavity acoustic mode.

Publisher

Global Science Press

Subject

Physics and Astronomy (miscellaneous)

Reference41 articles.

1. Identifying noisy and quiet modes in a jet;Jordan;in: AIAA Paper,2007

2. Fahl M. , Trust-region methods for flow control based on Reduced Order Modeling, Ph.D. thesis, Trier University (2000).

3. Three-dimensional instabilities in compressible flow over open cavities

4. Principal component analysis in linear systems: Controllability, observability, and model reduction

5. Optimal and robust control and estimation of linear paths to transition

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3