Three-Dimensional Lattice Boltzmann Flux Solver and Its Applications to Incompressible Isothermal and Thermal Flows

Author:

Wang Yan,Shu Chang,Teo Chiang Juay,Wu Jie,Yang Liming

Abstract

AbstractA three-dimensional (3D) lattice Boltzmann flux solver (LBFS) is presented in this paper for the simulation of both isothermal and thermal flows. The present solver combines the advantages of conventional Navier-Stokes (N-S) solvers and lattice Boltzmann equation (LBE) solvers. It applies the finite volume method (FVM) to solve the N-S equations. Different from the conventional N-S solvers, its viscous and inviscid fluxes at the cell interface are evaluated simultaneously by local reconstruction of LBE solution. As compared to the conventional LBE solvers, which apply the lattice Boltzmann method (LBM) globally in the whole computational domain, it only applies LBM locally at each cell interface, and flow variables at cell centers are given from the solution of N-S equations. Since LBM is only applied locally in the 3D LBFS, the drawbacks of the conventional LBM, such as limitation to uniform mesh, tie-up of mesh spacing and time step, tedious implementation of boundary conditions, are completely removed. The accuracy, efficiency and stability of the proposed solver are examined in detail by simulating plane Poiseuille flow, lid-driven cavity flow and natural convection. Numerical results show that the LBFS has a second order of accuracy in space. The efficiency of the LBFS is lower than LBM on the same grids. However, the LBFS needs very less non-uniform grids to get grid-independence results and its efficiency can be greatly improved and even much higher than LBM. In addition, the LBFS is more stable and robust.

Publisher

Global Science Press

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3