Dirichlet-to-Neumann Map Method with Boundary Cells for Photonic Crystals Devices

Author:

Yuan Jianhua,Lu Ya Yan

Abstract

AbstractIn a two-dimensional (2D) photonic crystal (PhC) composed of circular cylinders (dielectric rods or air holes) on a square or triangular lattice, various PhC devices can be created by removing or modifying some cylinders. Most existing numerical methods for PhC devices give rise to large sparse or smaller but dense linear systems, all of which are expensive to solve if the device is large. In a previous work [Z. Hu et al., Optics Express, 16 (2008), 17383-17399], an efficient Dirichlet-to-Neumann (DtN) map method was developed for general 2D PhC devices with an infinite background PhC to take full advantage of the underlying lattice structure. The DtN map of a unit cell is an operator that maps the wave field to its normal derivative on the cell boundary and it allows one to avoid computing the wave field in the interior of the unit cell. In this paper, we extend the DtN map method to PhC devices with a finite background PhC. Since there is no bandgap effect to confine the light in a finite PhC, a different technique for truncating the domain is needed. We enclose the finite structure with a layer of empty boundary and corner unit cells, and approximate the DtN maps of these cells based on expanding the scattered wave in outgoing plane waves. Our method gives rise to a relatively small and sparse linear systems that are particularly easy to solve.

Publisher

Global Science Press

Subject

Physics and Astronomy (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A radiation box domain truncation scheme for the wave equation;IMA Journal of Numerical Analysis;2023-05-24

2. Improved Dirichlet-to-Neumann map method for scattering by circular cylinders on a lattice;Journal of the Optical Society of America A;2012-08-30

3. Helmholtz equation in periodic media with a line defect;Journal of Computational Physics;2012-02

4. Transparent Boundary Conditions for Evolution Equations in Infinite Periodic Strips;SIAM Journal on Scientific Computing;2012-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3