Numerical Methods for Balance Laws with Space Dependent Flux: Application to Radiotherapy Dose Calculation

Author:

Berthon Christophe,Frank Martin,Sarazin Céline,Turpault Rodolphe

Abstract

AbstractThe present work is concerned with the derivation of numerical methods to approximate the radiation dose in external beam radiotherapy. To address this issue, we consider a moment approximation of radiative transfer, closed by an entropy minimization principle. The model under consideration is governed by a system of hyperbolic equations in conservation form supplemented by source terms. The main difficulty coming from the numerical approximation of this system is an explicit space dependence in the flux function. Indeed, this dependence will be seen to be stiff and specific numerical strategies must be derived in order to obtain the needed accuracy. A first approach is developed considering the 1D case, where a judicious change of variables allows to eliminate the space dependence in the flux function. This is not possible in multi-D. We therefore reinterpret the 1D scheme as a scheme on two meshes, and generalize this to 2D by alternating transformations between separate meshes. We call this procedure projection method. Several numerical experiments, coming from medical physics, illustrate the potential applicability of the developed method.

Publisher

Global Science Press

Subject

Physics and Astronomy (miscellaneous)

Reference45 articles.

1. Salvat F. , Fernandez-Varea J. M. , and Sempau J. , PENELOPE-2008,A Code System for Monte Carlo Simulation of Electron and Photon Transport, OECD, 2008, ISBN 978-92-64-99066-1.

2. On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws

3. Multigroup half space moment approximations to the radiative heat transfer equations

4. Description and dosimetric verification of the peregrine Monte Carlo dose calculation system for photon beams incident on a water phantom;Siantar;Med. Phys.,2001

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3