Extension and Comparative Study of AUSM-Family Schemes for Compressible Multiphase Flow Simulations

Author:

Kitamura Keiichi,Liou Meng-Sing,Chang Chih-Hao

Abstract

AbstractSeveral recently developed AUSM-family numerical flux functions (SLAU, SLAU2, AUSMM+-up2, and AUSMPW+) have been successfully extended to compute compressible multiphase flows, based on the stratified flow model concept, by following two previous works: one by M.-S. Liou, C.-H. Chang, L. Nguyen, and T.G. Theofanous [AIAA J. 46:2345-2356, 2008], in which AUSM+-up was used entirely, and the other by C.-H. Chang, and M.-S. Liou [J. Comput. Phys. 225:840-873, 2007], in which the exact Riemann solver was combined into AUSM+-up at the phase interface. Through an extensive survey by comparing flux functions, the following are found: (1) AUSM+-up with dissipation parameters of Kp and Ku equal to 0.5 or greater, AUSMPW+, SLAU2, AUSM+-up2, and SLAU can be used to solve benchmark problems, including a shock/water-droplet interaction; (2) SLAU shows oscillatory behaviors [though not as catastrophic as those of AUSM+ (a special case of AUSM+-up with Kp = Ku = 0)] due to insufficient dissipation arising from its ideal-gas-based dissipation term; and (3) when combined with the exact Riemann solver, AUSM+-up (Kp = Ku = 1), SLAU2, and AUSMPW+ are applicable to more challenging problems with high pressure ratios.

Publisher

Global Science Press

Subject

Physics and Astronomy (miscellaneous)

Reference59 articles.

1. Total variation diminishing Runge-Kutta schemes

2. Low-Diffusion Flux-Splitting Methods for Real Fluid Flows with Phase Transitions

3. Multidimensional, Inviscid Flux Reconstruction for Simulation of Hypersonic Heating on Tetrahedral Grids;Gnoffo;AIAA Paper,2009

4. A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow

5. A New Approach to the Simulation of Compressible Multi-phase Flows with AUSM+ Scheme;Chang;AIAA Paper,2003

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3