Abstract
AbstractA finite difference scheme for the one-dimensional space fractional diffusion equation is presented and analysed. The scheme is constructed by modifying the shifted Grünwald approximation to the spatial fractional derivative and using an asymmetric discretisation technique. By calculating the unknowns in differential nodal point sequences at the odd and even time levels, the discrete solution of the scheme can be obtained explicitly. We prove that the scheme is uniformly stable. The error between the discrete solution and the analytical solution in the discretel2norm is optimal in some cases. Numerical results for several examples are consistent with the theoretical analysis.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献