High-Order Conservative Asymptotic-Preserving Schemes for Modeling Rarefied Gas Dynamical Flows with Boltzmann-BGK Equation

Author:

Diaz Manuel A.,Chen Min-Hung,Yang Jaw-Yen

Abstract

AbstractHigh-order and conservative phase space direct solvers that preserve the Euler asymptotic limit of the Boltzmann-BGK equation for modelling rarefied gas flows are explored and studied. The approach is based on the conservative discrete ordinate method for velocity space by using Gauss Hermite or Simpsons quadrature rule and conservation of macroscopic properties are enforced on the BGK collision operator. High-order asymptotic-preserving time integration is adopted and the spatial evolution is performed by high-order schemes including a finite difference weighted essentially non-oscillatory method and correction procedure via reconstruction schemes. An artificial viscosity dissipative model is introduced into the Boltzmann-BGK equation when the correction procedure via reconstruction scheme is used. The effects of the discrete velocity conservative property and accuracy of high-order formulations of kinetic schemes based on BGK model methods are provided. Extensive comparative tests with one-dimensional and two-dimensional problems in rarefied gas flows have been carried out to validate and illustrate the schemes presented. Potentially advantageous schemes in terms of stable large time step allowed and higher-order of accuracy are suggested.

Publisher

Global Science Press

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3